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Abstract 

 

This paper deals with a summary presentation of the butterfly effect and of some facts and experiments that makes this 

effect an important tool for the study of meteorology, especially for weather prediction. 
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INTRODUCTION 
 

Weather prediction is an extremely difficult 

problem. Meteorologists can predict the 

weather for short periods of time, a couple days 

at most, but beyond that predictions are 

generally poor. Weather patterns are an 

example of iterative systems that can exhibit 

chaotic behaviour. In everyday language 

"chaos" implies the existence of unpredictable 

or random behaviour. The word usually carries 

a negative connotation involving 

undesirable disorganization or confusion. 

However, in the scientific realm this 

unpredictable behaviour is not necessarily 

undesirable. In short, chaos embodies three 

important principles:extreme sensitivity to 

initial conditions, cause and effect are not 

proportional and nonlinearity. 

 

WEATHER PREDICTION 

 

The forecast models will not be very reliable at 

predicting the exact location of the events 

above. However, the models can give you 

insight into the potential of the event occurring. 

This is why weather forecasting is full of 

predictions that include a probability of 

occurrence. Weather features often occur on too 

small of a scale to be realistically forecasted 

over a particular location. 

Probability forecasting basically eliminates this 

problem. For example, giving a probability of 

thunderstorms for a city is a more realistic 

prediction than a forecast saying there will or 

will not be a thunderstorm at a city. If a 

thunderstorm misses a city by a few miles when 

there was a probability of thunderstorms in the 

forecast it is not a busted forecast. However, if 

there is a high number probability of 

thunderstorms in the area and nothing happens 

in or near the forecast area then this would be a 

bust. 

The smaller the scale of a weather feature the 

more difficulty the forecast models will have in 

resolving that feature. This is important because 

smaller scale features influence larger scale 

features more significantly as time passes. This 

fact is what causes the forecast models to tend 

to be less accurate as time moves forward. This 

is termed "the butterfly effect". Just a person 

breathing can have an influence on the weather 

over time. The smallest of events can have the 

largest of outcomes over time. 

Weather patterns are an example of iterative 

systems that can exhibit chaotic behaviour. An 

iterative system is simply a function where the 

output for the next step, or iteration, is 

dependent on the result from the previous 

iteration. This sort of system can be applied to 

real life, where all sorts of things depend on 

their current state. 

Edward Lorenz was a mathematician and 

meteorologist at the Massachusetts Institute of 

Technology . With the advent of computers, 

Lorenz saw the chance to combine mathematics 

and meteorology. He set out to construct a 
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mathematical model of the weather, namely a 

set of differential equations that represented 

changes in temperature, pressure, wind 

velocity, etc. In the end, Lorenz stripped the 

weather down to a crude model containing a set 

of 12 differential equations. 

 
MOTION OF ATMOSPHERIC FLUID 

 
Fluids can transfer heat. For fluids with high 

Reynolds numbers (chaotic fluids), the fraction 

of the kinetic energy of the fluid particles that is 

dissipated by friction as heat is small. Thus, the 

air, which we may call the atmospheric fluid is 

most adept at transporting heat ought to be 

turbulent. It is thanks to this turbulent air that 

we are alive today. Air’s thermal conductivity 

is low, so when the Earth is heated by the Sun 

during the day, it does not emit much of this 

heat into the air via conduction. If winds (and, 

therefore, convective turbulence) did not exist, 

then the Earth would have a lot of excess 

thermal energy each day and would eventually 

burn us, as surface temperatures could easily 

reach 373 K!  

Another example of how turbulence protects us 

pertains to carbon dioxide. Since carbon 

dioxide is the heaviest component of the 

atmosphere, if the air were motionless, then all 

of the carbon dioxide in the atmosphere would 

hover at very low altitudes, poisoning us all. 

However, there is turbulence, and there  

are winds, so the carbon dioxide is kept 

dispersed throughout the atmosphere. 

 

THE WIND 

 
Wind is indeed the flow of a fluid, namely the 

air, and is a key factor in weather conditions. 

Winds are caused by the sum of internal and 

external forces on the air. Air experiences a 

gravitational force downward. Under calm 

conditions, the air is held roughly at the same 

altitude because the pressure gradient force 

counteracts the gravitational force. 

Whenever the magnitude of the pressure 

gradient force varies significantly from that of 

the gravitational force, then a wind begins to 

blow. The air pressure varies with altitude such 

that 
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where z is the altitude, R is the universal gas 

constant, and M is the molar mass of air in 

kilograms. Temperature gradients with respect 

to altitude tend to be rather small, so at 

relatively high altitudes, we can claim that the 

temperature is roughly constant over changes in 

altitude that are not very large. In that case, we 

can say that 
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where p0 is the air pressure at the Earth’s 

surface. Here the temperature is usually 

assumed to be about 250K. Under calm 

conditions, the resulting pressure gradient force 

should be roughly equal in magnitude and 

opposite in direction to the gravitational force. 

Unbalanced pressure gradient forces in 

horizontal directions lead to wind development 

just as they do in the vertical direction. 
 

THE BUTTERFLY EFFECT 
 

On a particular day in the winter of 1961, 

Lorenz wanted to re-examine a sequence of 

data coming from his model. Instead of 

restarting the entire run, he decided to save time 

and restart the run from somewhere in the 

middle. Using data printouts, he entered the 

conditions at some point near the middle of the 

previous run, and re-started the model 

calculation. What he found was very unusual 

and unexpected. The data from the second run 

should have exactly matched the data from the 

first run. While they matched at first, the runs 

eventually began to diverge dramatically — the 

second run losing all resemblance to the first 

within a few "model" months. A sample of the 

data from his two runs is shown below: 
 

 
 

Fig. 1. 
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Lorenz finally found the source of the problem. 

To save space, his printouts only showed three 

digits while the data in the computer's memory 

contained six digits. Lorenz had entered the 

rounded-off data from the printouts assuming 

that the difference was inconsequential. For 

example, even today temperature is not 

routinely measured within one part in a 

thousand. 

This led Lorenz to realize that long-term 

weather forecasting was doomed. His simple 

model exhibits the phenomenon known as 

"sensitive dependence on initial conditions." 

This is sometimes referred to as the butterfly 

effect, e.g. a butterfly flapping its wings in 

South America can affect the weather in 

Central Park. The question then arises — why 

does a set of completely deterministic equations 

exhibit this behaviour? After all, scientists are 

often taught that small initial perturbations lead 

to small changes in behaviour. This was clearly 

not the case in Lorenz's model of the weather. 

The answer lies in the nature of the equations; 

they were  

nonlinear equations. While they are difficult to 

solve, nonlinear systems are central to chaos 

theory and often exhibit fantastically complex 

and chaotic behaviour. 

Edward Lorenz's first weather model exhibited 

chaotic behaviour, but it involved a set of 12 

nonlinear differential equations. Lorenz decided 

to look for complex behaviour in an even 

simpler set of equations, and was led to the 

phenomenon of rolling fluid convection. The 

physical model is simple: place a gas in a solid 

rectangular box with a heat source on the 

bottom. 

Lorenz simplified a few fluid dynamics 

equations - called the Navier-Stokes equations - 

and ended up with a set of three nonlinear 

equations: 
 

                          (3) 

where P is the Prandtl number representing the 

ratio of the fluid viscosity to its thermal 

conductivity, R represents the difference in 

temperature between the top and bottom of the 

system, and B is the ratio of the width to height 

of the box used to hold the system. The   simple 

to solve. However, they represent an extremely 

complicated dynamical system. 

LORENZ ATTRACTOR 

If one plots the results in three dimensions the 

following figure, called the Lorenz attractor, is 

obtained. 

 
 

Fig. 2. 

 
The projection on the y-z plane is shown 

below:           

 

 
 

Fig. 3. 

 

The projection on the x-z plane is also shown 

below: 

 

 
 

Fig. 4. 
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LORENZ EQUATIONS 

 
If we vary all three parameters in the Lorenz 

equations, we will find many different types of 

solutions. For some sets of parameters, the 

solution will exhibit preturbulence, which is 

where trajectories oscillate chaotically for a 

while before reaching a stable stationary or 

periodic behaviour. Others yield intermittent  
chaos, which is where trajectories alternate 

between chaos and stable periodic behaviour. 

Still others lead to noisy periodicity, which is 

where trajectories are very close to being in 

non-stable periodic orbits. Such trajectories 

appear chaotic, but they are not. 

The parameter values that lead us to the Lorenz 

Attractor have trajectories that display several 

properties of turbulence. First, they are non-

periodic. In fact, they never intersect 

themselves when plotted in three dimensions. If 

they did, then they would start over again with 

the same initial condition, and the trajectory 

would be periodic. They also never approach 

periodic or stationary behaviour.  

However, what is particularly interesting about 

these plots is that their general (rough) 

geometric form is independent of initial 

conditions, while the exact form (details) 

displays sensitive dependence on initial 

conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One last interesting aspect of the Lorenz 

Attractor is that its associated trajectories are 

deterministic. This means that given an exact 

set of initial conditions, there is only one 

possible trajectory. Thus, if you were to use 

exactly the same initial conditions several 

times, you would be able to reproduce your 

results. 

 

CONCLUSIONS 

 

Chaotic phenomena occur not only in meteorology, 

but also in other fields like biology, demography, 

psychology. Nevertheless, there is growing 

evidence that spontaneous, deterministic chaotic 

dynamics is an important element in understanding 

the world we live in. 
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