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Abstract 
 
Machine learning (ML) algorithm-based models represent cutting-edge techniques used for mapping, quantifying, and 
modelling changes in land use and land cover (LULC) over time. In this study, a comparative analysis was conducted on 
the multilayer perceptron neural network (MLP) and support vector machine classification (SVM) applied to LULC 
change detection and forecasting within the coastal plain territory of Suriname. Sentinel-2A satellite data covering the 
period from 2017 to 2022 was utilised, along with additional variables such as the distance from rivers, roads, and 
administrative cities in each district and slope and digital elevation models in the prediction models. The SVM algorithm 
based predictive model, incorporating an urbanization transition sub-model, exhibited an impressive accuracy of 83.85%, 
surpassing the MLP algorithm-based model, which did not exceed 64.63%. Consequently, this model is recommended for 
generating LULC change prediction maps. These maps can serve as a crucial baseline for the Surinamese government, 
providing valuable insights for policy development and sustainable land use management. 
 
Key words: detection, machine learning, modelling, remote sensing, Suriname. 
 
INTRODUCTION 
 
Analysing spatiotemporal trends in land use and 
land cover (LULC) change is crucial for gaining 
insights into effective and sustainable land 
management (Girma et al., 2022; Devi & 
Shimrah, 2023). This is particularly pertinent 
given the widespread prevalence of extensive 
LULC changes globally, especially in 
developing countries, where such 
transformations have become notably common 
in recent decades (Kafy et al., 2021). Similarly, 
Suriname has experienced pronounced LULC 
changes in the last decades, marked by a 
significant expansion of built-up areas at the 
expense of other LULC types, predominantly 
forest-covered and agricultural lands. 
Specifically, Suriname is struggling with illegal 
artisanal gold mining, causing large-scale 
contamination in the environment (Huisden et 
al., 2020a), as well as illegal deforestation that 
endangers biodiversity, degrades air and water 
quality, and leads to undesirable land use 

changes (Huisden et al., 2020b). LULC change 
modelling is an innovative technique for 
monitoring and managing land resources 
(Anurag & Pradhan, 2018) and has proven to be 
an essential tool for land use forecasting 
(Rozario et al., 2017). Modelling demonstrates 
the capability to efficiently represent and 
forecast complex LULC systems by 
incorporating multiple variables (Wang et al., 
2021). These driving variables are represented 
by various geospatial data, which can be 
acquired through the use of satellite remote 
sensing data and geographical information 
system techniques (Kafy et al., 2021). 
Frequently employed models for predicting 
changes in land use encompass statistical 
models (Hyandye 2015; Yeh & Liaw, 2021), 
evolutionary models (Aitkenhead & Alders, 
2009), cellular models (Muhammad et al., 
2021), Markov models (Mohamed & Worku, 
2020), hybrid models (Marquez et al., 2019), 
and multi-agent-based models (Ralha et al., 
2013). Among these, the most widely utilised 
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are cellular and Markov chain analyses, along 
with their amalgamated form known as the CA-
Markov model (Dey et al., 2021). Markov chain 
analysis, a random stochastic modelling method 
discrete in both time and state (Myslyva et al., 
2021), outlines LULC transitions from one time 
period (t1) to the next (t2), enabling the 
projection of future changes (Rongqun et al., 
2011). While Markov analysis is widely 
employed for simulating and predicting land use 
changes, it does have some drawbacks, making 
it more suitable for short-term projections 
(Sinha & Kumar, 2013). Notably, it lacks 
consideration for the spatial allocation of 
information within each class, and the 
probabilities of change between landscape states 
are not constant. As a result, while it can provide 
accurate magnitudes of change, it may not 
accurately indicate the direction of land use and 
land cover (LULC) changes (Wang et al., 2021). 
To augment the predictive capabilities of the 
Markov chain model, various techniques are 
implemented. Among these, a promising 
approach involves incorporating machine 
learning techniques, such as artificial neural 
networks or support vector machines, to 
complement the Markov model (Gharaibeh et 
al., 2020; Girma et al., 2022). This integration 
aims to enhance the model's capacity to capture 
intricate relationships and non-linear patterns in 
land-use change dynamics, thereby facilitating 
more accurate predictions of future land-use 
scenarios (Wang et al., 2021). 
Despite the apparent occurrence of land use 
changes in the Suriname context, a notable gap 
exists in studies specifically addressing the 
detection of current trends and the prediction of 
future dynamics in the country's land use and 
land cover. This research void impedes a 
comprehensive understanding of the dynamic 
land use patterns in Suriname, limiting the 
ability to make informed decisions for 
sustainable development. Taking into account 
the aforementioned challenges, this study 
pursues a threefold objective: (1) to collect and 
process initial geospatial data on land use and 
land cover; (2) to evaluate the accuracy and 
reliability of two machine learning algorithms 
(MLP - multilayer perceptron neural network; 
SVM - support vector machine classification) in 
predicting future land use changes within 
Suriname; and (3) to develop a robust simulation 

model using the most effective machine learning 
algorithm identified from the comparative 
analysis. The simulation model is specifically 
designed to predict LULC changes over the 
upcoming 10-year period, aiming to provide 
valuable insights for strategic planning and 
decision-making in the context of Suriname's 
sustainable development. 
 
MATERIALS AND METHODS  
 
Study area. The studies were conducted in 
Suriname, a country situated north of the equator 
on the north-eastern coast of South America. 
Suriname's geographical coordinates extend 
from 1°50.45' N to 6°0.35' N and 53°59.08' W 
to 54°33.49' W. Geologically, over 80% of 
Suriname comprises the deeply weathered, 
rainforest-covered Precambrian Guiana Shield, 
extending east and south to the Amazon River in 
Brazil and west to the Orinoco River in 
Venezuela. Major rivers in the country include 
the Marowijne River, Commewijne River, 
Suriname River, Saramacca River, Coppename 
River, Nickerie River, and Corantijn River. 
Suriname covers an area of approximately 16.4 
million hectares and is divided into ten 
administrative districts, eight of which fall 
within the study area: Marowijne, Commewijne, 
Wanica, Paramaribo, Para, Saramacca, Coronie, 
and Nickerie (Figure 1). The study area, 
covering 25,755 km², is located in the northern 
part of Suriname within the Young Coastal 
Plain. This area ranges in width from about 20 
km in the east to about 100 km in the west, with 
elevation variations of 0–4 m above mean sea 
level (MSL). Additionally, the study area 
includes the Old Coastal Plain, formed on 
remnants of ridges, gullies, and mud flats, with 
elevation variations of 4–10 m above MSL, and 
the Cover Landscape (also known as the 
Savannah Belt), ranging from 10 to 100 m above 
MSL (Ouboter & Jairam, 2012). 
The climate of the study area is tropical-
equatorial (Af), tropical monsoon (Am) and 
tropical savanna climate (Aw/As) (due to 
Köppen-Geiger climate classification). The 
average daily temperature varies from 26°C in 
January to 31°C in October. Average annual 
rainfall within the coastal plains ranges from 
1500 to 1700 mm. The soil cover of the study 
area is represented by Umbric Glaysols, Albic 



832

Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering. Vol. XIII, 2024
Print ISSN 2285-6064, CD-ROM ISSN 2285-6072, Online ISSN 2393-5138, ISSN-L 2285-6064

 
Arenosols, Albic Plintosols and Fibric Histosols 
according to the international soil classification 
system (WRB, 2014) (Gardi et al., 2015). 
 

 

 
Figure 1. Location of the study area 

 
Datasets used. In this study, three remotely 
sensed satellite images were employed to analyze 
LULC change dynamics. The Sentinel-2 L2A 
image scenes, which were classified and conver-
ted into LULC maps, were obtained from the 
freely accessible Esri land cover data portal. The 
downloaded raster images were pre-geo-
referenced in a latitude/longitude projection 
(EPSG:4326) with a datum and ellipsoid of 
WGS84. Additionally, the road-river network 
map and administrative cities of the district loca-
tions within the study area were acquired from 
OpenStreetMap (www.openstreetmap.org). The 

digital elevation model (DEM) was downloaded 
from the freely accessible 30-meter SRTM Tile 
Downloader (Table 1). 
 

Table 1. Characteristics of data collected 

Data Source Acquisiti
on year 

Scale/ 
Resoluti

on 

Multispectral 
satellite imagery 

Esri Land 
Cover: 

https://livingatl
as.arcgis.com/l

andcover/ 

2017 
2021 
2022 

10 m 

Digital Elevation 
Model 

30-Meter 
SRTM Tile 

Downloader: 
https://dwtkns.
com/srtm30m/ 

2018 

1-
arcsecon

d 
(3601x3

601 
pixels) 

 
Slope, distance from rivers, distance from roads, 
and distance from urban datasets were 
developed through individual elaboration in 
2023 with a resolution of 10 m. 
These datasets underwent processing in QGIS 
3.34 and ArcGIS 10.8 packages, involving 
operations such as projection to WGS 84 UTM 
Zone 21N, data conversion, DEM masking, and 
separation of road networks from other features 
(rivers) using the Query tool. The Euclidean 
distance function was employed to generate 
distance maps from roads, rivers/creeks, and 
urban areas using vector data of the features 
(Gharaibeh et al., 2020; Kafy et al., 2021). The 
DEM was manipulated in ArcGIS spatial analyst 
tools to create elevation and slope maps. 
LULC change detection and simulation. Land 
Change Modeler (LCM) built in TerrSet 
software version 18.31 was utilized to detect and 
simulate future LULC changes. This empirically 
driven, stepwise process involves change 
analysis, transition potential modelling, and 
change prediction (Eastman, 2016), based on 
historical changes from time 1 (t1 = 2017) to 
time 2 (t2 = 2021). The Markov probability 
matrix was employed to determine the 
probability of converting from the current state 
(LULC class) to another state in the next period. 
Low and high transitions were assigned 
probabilities near 0 and 1, respectively (Sinha & 
Kumar, 2013; Wang et al., 2021). Gains and 
losses to each LULC category were identified, 
and transitions from one land cover state to 
another were used to generalize the spatial 
changing pattern (Dey et al., 2021; Leta et al., 
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2021). Recognizing the need to incorporate the 
potential influence of independent variables in 
simulating LULC changes (Gharaibeh et al., 
2020), this study considered six key driver 
variables. These variables include distances 
from rivers/creeks, roads, and administrative 
centres within the district, as well as terrain 
relief and slope represented by the DEM. Land 
cover transition potentials, indicating the 
likelihood of land transitioning from one class to 
another in the future, were determined using 
various methodologies, including a multi-layer 
perceptron neural network and support vector 
machine learning algorithms. Driver variables 
were inputted into the LCM transition sub-
model, and machine learning algorithms were 
employed to generate potential transition maps 
using the dependent variables (2017 and 2021 
imagery). Subsequently, hard predictions for the 
LULC changes in the year 2022 were generated. 
For every modelling approach, four transition 
sub-models were tested. 
Validation of model outputs. The validation 
process was conducted to assess the agreement 
and disagreement between the actual and 
simulated LULC maps of 2022, ensuring the 
reliability and acceptance of different model 
approaches in predicting the future scenario in 
2026 and 2031 (Dey et al., 2021; Kafy et al., 
2021). Two distinct validations were carried out 
using the VALIDATE module in TerrSet and 
the ROC Tool of ArcSDM. The VALIDATE 
module computed kappa index statistics using 
the hard prediction as a comparison map, 
including kappa for no information (Kno), kappa 
for grid cell level location (Klocation), kappa for 
stratum-level location (KlocationStrata), and kappa 
standard (Kstandard) (Mishra et al., 2018; Girma et 
al., 2022). A strong and acceptable Kappa value 
is typically associated with values around 80% 
and above (Gharaibeh et al., 2020; Girma et al., 
2022). The second method employed for 
estimating LULC change model performance 
was the Receiver Operating Characteristic 
(ROC). The area under the ROC curve (AUC) 
was calculated, representing the discriminatory 
power of the model in accurately predicting the 
occurrence or non-occurrence of land use 
change (Arabameri et al., 2019; Arora et al., 
2021). AUC values were interpreted as follows: 
<0.6 (poor), 0.6-0.7 (moderate), 0.7-0.8 (good), 
0.8-0.9 (very good), and >0.9 (excellent) model 

performance (Nhu et al., 2020). For future 
predictions, the images of 2017 and 2021 were 
considered as the dependent variables to 
simulate the LULC maps of 2026 and 2031. 
Figure 2 illustrates the modelling and validation 
processes employed in this study. 
 

 
Figure 2. Research design flowchart 

 
RESULTS AND DISCUSSIONS  
 
Analyzing and comprehending the historical 
alterations in LULC dynamics is essential for 
predicting forthcoming trends in the coming 
decades (Regasa et al., 2021; Girma et al., 2022). 
The study area underwent landscape 
modifications, and diverse land use changes 
were observed during the period spanning from 
2017 to 2021, as illustrated in Table 2 and Figure 
3. Despite the overall stability in the structure of 
land cover, with over 80% of the territory 
remaining forested, a discernible trend was 
noted in the increase of flooded areas, 
constituting a net change of 25.7% of the total 
area. 
 
 

 
 

 
Figure 3. LULC maps for 2017 (A) and 2021 (B) 

A 

B 
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Several factors may contribute to the increase in 
flooded areas in Suriname: (a) changes in 
precipitation patterns and increased rainfall 
intensity due to global climate change; (b) 
human activities, such as deforestation, 
urbanization, or changes in agricultural 
practices, can alter or block natural waterways; 
(c) poorly designed or maintained drainage and 
flood control infrastructure. 
 

Table 2. Area and net change of LULC classes 

LULC class 
Area, ha Annual 

change, 
ha/year 

Net 
change, 

% of 
area 

2017 2021 

Water 63755.9 66927.6 792.9 5.0 

Forest 2112756.7 2146469.8 8428.3 1.6 

Flooded areas 42030.8 52824.5 2698.4 25.7 

Agricultural 
land 64147.9 59966.0 -1045.5 -6.5 

Built-up areas 33765.8 37060.2 823.6 9.8 

Bare ground 7370.4 266.9 -1775.9 -96.4 

Rangeland 251705.8 212018.2 -9921.9 -15.8 

 
Anthropogenic activities related to the 
development of buildings and constructions, 
especially intensive in coastal regions, coupled 
with uncontrolled and unjustified impacts on the 
hydrological regime, have played a crucial role 
in the rise of flooded areas. This is evidenced by 
a rapid annual increase in built-up areas, 
exceeding 820 hectares during the observation 
period. Gains and losses for the respective study 
period were acquired from the TerrSet LCM 
change analysis module and represented by a 
graph in Figures 4 and 5. The most significant 
increase occurred in forest-covered areas, while 
rangeland experienced a notable decrease 
throughout the entire period. The transitional 
area matrix contains the pixel number that is 
expected to change from each LULC class over 
the specified time frame (Eastman, 2016). Table 
3 represents the detailed transition area matrix of 
each LULC class between 2017 and 2021. 
 

 
Figure 4. Gains and losses graph between 2017 and 2021 (ha) 

 
Figure 5. Net change graph between 2017 and 2021 (ha) 

 
Table 3. Transition area matrix (thousand ha)  

of LULC between 2017 and 2021 

2017 

2021 

Total 
W
a
t
e
r 

F
o
r
e
s
t 

F
l
o
o
d
e
d 
a
r
e
a
s 

Ag
ric
ult
ura
l 

lan
d 

B
u
i
l
t
-
u
p 
a
r
e
a
s 

B
a
r
e 
g
r
o
u
n
d 

R
a
n
g
e
l
a
n
d 

Water 61.5 1.2 0.6 0.1 0.0 0.0 0.3 63.8 

Forest 2.2 2078.0 5.4 2.3 1.8 0.0 23.1 2112.8 

Flooded areas 0.9 5.7 32.4 0.3 0.0 0.0 2.7 42.0 

Agricultural land 0.7 3.7 2.5 50.1 0.5 0.0 6.7 64.1 

Built-up areas 0.0 1.7 0.0 0.3 31.1 0.0 0.6 33.8 

Bare ground 1.2 2.0 0.1 0.2 2.4 0.2 1.4 7.4 

Rangeland 0.4 54.3 12.0 6.6 1.3 0.0 177.2 251.7 

Total 66.9 2146.5 52.8 60.0 37.1 0.3 212.0 2575.5 

 
In summary, there are notable changes in forest-
covered and flooded areas, agricultural land, 
built-up areas, bare ground, and rangeland over 
the specified period. Rangeland, in particular, 
stands out with a considerable reduction, while 
forest and agricultural land show substantial 
increases. The outcomes of the LULC change 
analysis serve as the foundation for constructing 
transition sub-models. Based on these results, 
considering the most significant gains and losses 
for each land use class, four sub-transition 
models are identified (Table 4). 
The factors influencing changes in land use are 
identified through spatial analysis and 
incorporated into the model as either static or 
dynamic components to enhance its accuracy 
(Leta et al., 2021). This study utilized 
topography and proximity factors for predicting 
LULC changes. Before integrating these drivers 
into the predictive model, selected driver 
variables underwent testing to assess their 
explanatory power, with Cramer’s V used to 
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measure the strength of association and P values 
used for statistical significance evaluation 
(Table 5). 
 

Table 4. Transition sub-models and their descriptors 
Transition 
sub-model 

Description Land cover transition 

Afforestation 
Other land classes 
are converted to 

forest 

Rangeland to forest 
Agricultural land to forest 

Bare ground to forest 

Urbanization 
Other land classes 
are converted to 
built-up areas 

Bare ground to built-up 
areas 

Rangeland to built-up areas 
Agricultural land to built-

up areas 
Forest to built-up areas 

Flood 
intensification 

Other land classes 
are converted to 
flooded areas or 
flooded areas are 

converted to water 

Rangeland to flooded areas 
Agricultural land to 

flooded areas 
Flooded areas to water 

Desolation 
Agricultural land 

converted into 
other land classes 

Agricultural land to 
flooded areas 

Agricultural land to built-
up areas 

Agricultural land to forest 
Agricultural land to water 

 
Table 5. Cramer’s V and p-value for each of the 

explanatory variables 

Driver variables Cramer’s V p-value 
Elevation 0.388 0.0000 

Slope 0.379 0.0000 
Distance from rivers 0.149 0.0000 
Distance from roads 0.140 0.0000 
Distance from urban 0.214 0.0000 
Evidence Likelihood 0.763 0.0000 

 
According to Eastman (2016), Cramer’s V 
values of 0.15 or higher are considered ‘useful,’ 
while values of 0.4 or higher are deemed ‘good.’ 
Variables such as elevation, slope, and distance 
from rivers and urban areas are considered 
useful for predicting transitions. On the other 
hand, variables like distance from roads have 
low Cramer’s V values, indicating that their 
effect on LULC change in the study area is not 
critical. The assessment of evidence likelihood 
serves as a means to determine the relative 
frequency of pixels representing various LULC 
classes within changing areas. This approach is 
particularly recommended in instances where 
Cramer’s V values are low (Gibson, 2018). The 
results obtained from evidence likelihood are 
deemed satisfactory in this study, serving as a 
quantitative measure of the frequency of change 
observed between rangeland and all other land 
classes. 
The skill measures and accuracy rates of each 
sub-model were calculated using MLP and 
SVM, and the results are summarized in Tables 

6 and 7. Despite numerical data indicating a 
higher accuracy rate for MLP (Girma et al., 
2022; Leta et al., 2021; Gharaibeh et al., 2020; 
Gibson et al., 2018, and others), SVM 
demonstrated a higher predictive ability in the 
current study. For the MLP sub-model, accuracy 
varies from 20.06% to 64.63%, while for SVM, 
its value fluctuates from 47.82% to 83.85%. 
 

Table 6. Sub-models included in MLP with associated 
performance indicators 

S
u
b
-
m
o
d
e
l 

Transition/Persistence 
class 

M
in
i

m
u
m 
ce
lls 
th
at 
tr
an
sit
io
ne
d/
pe
rsi
st
ed 

C
l
a
s
s 
s
k
i
l
l 
m
e
a
s
u
r
e 
(
r
a
t
i
o
) 

S
u
b
-
m
o
d
e
l 
a
c
c
u
r
a
c
y
, 
% 

Sub-
model 
skill 

RMSE 

T
r
a
i
n
i
n
g 

T
e
s
t
i
n
g 

A
f
f
o
r
e
s
t
a
t
i
o
n 

Transition to the forest-
covered land:  
Agricultural land  
Bare ground  
Rangeland  
Persistence: 
Agricultural land  
Bare ground  
Rangeland 

 
195508 

 
 
 

15514 0
.
4
2
3
3 

5
1
.
9
4 

 
 

0.0628 
0.1816 
0.4124 

 
0.3957 
0.9090 
0.5762 

0
.
3
0
8
0 

0
.
3
0
8
3 

U
r
b
a
n
i
s
a
t
i
o
n 

Transition to built-up 
areas:  
Forest  
Agricultural land  
Bare ground  
Rangeland  
Persistence: 
Forest 
Agricultural land  
Bare ground  
Rangeland 

 
48112 
 
 
 
 
15514 

0
.
4
7
8
4 

5
4
.
3
6 

 
 

-0.1429 
0.5596 
0.7525 
0.9157 

 
0.4597 
0.5038 
0.0304 
0.7410 

0
.
2
6
5
9 

0
.
2
6
6
6 

F
l
o
o
d 
i
n
t
e
n
s
i
f
i
c
a
t
i
o
n 

Transition to water and 
flooded areas: 
Flooded areas*  
Agricultural land**  
Rangeland**  
Persistence: 
Flooded areas 
Agricultural land  
Rangeland 

 
94899 
 
 
 
3237518 

0
.
5
7
5
6 

6
4
.
6
3 

 
 

0.5851 
0.7067 
0.7825 

 
0.4308 
0.5319 
0.4182 

0
.
2
8
6
2 

0
.
2
8
6
6 

D
e
s
o
l
a
t
i
o
n 

Transition:  
Agricultural land to water 
Agricultural land to forest 
Agricultural land to 
flooded areas 
Agricultural land to built-
up areas 
Persistence:  
Agricultural land 

48112 
 
 
 
 
 
 
12133 

0
.
0
0
0
8 

2
0
.
0
6 

 
-0.2500 
1.0000 
-0.2500 

 
-0.2500 

 
 

-0.2500 

0
.
4
4
7
2 

0
.
4
4
7
2 

Note: * - transition to water; ** - transition to flooded areas. 
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Table 7. Sub-models included in SVM with associated 

performance indicators 

Su
b-
m
od
el 

Transition|/Persistence 
class 

S
V 
n
u
m
b
er 

CV 
acc
urac

y 

Out
-of-
sam
ple 
acc
urac

y 

Skil
l 

mea
sure 

Af
for
est
ati
on 

Transition to the forest-covered 
land:  
Agricultural land  
Bare ground  
Rangeland  
Persistence: 
Agricultural land  
Bare ground  
Rangeland 

 
 

1637 
1063 
1863 

 
1648 
1080 
1881 

 
 

0.7248 
0.6540 
0.6824 

 
0.6348 
0.9264 
0.5468 

 
 

0.7345 
0.6656 
0.6716 

 
0.6300 
0.9111 
0.5294 

 
 

0.4689 
0.3312 
0.3432 

 
0.2600 
0.8223 
0.0588 

Ur
ba
nis
ati
on 

Transition to built-up areas:  
Forest  
Agricultural land  
Bare ground  
Rangeland  
Persistence: 
Forest 
Agricultural land  
Bare ground  
Rangeland 

 
 

840 
1664 
490 
735 

 
879 

1664 
502 
736 

 
 

0.9056 
0.9104 
0.8400 
0.9100 

 
0.7652 
0.5924 
0.9700 
0.8148 

 
 

0.9149 
0.9005 
0.8486 
0.9150 

 
0.7772 
0.5841 
0.9664 
0.8036 

 
 

0.8299 
0.8010 
0.6972 
0.8301 

 
0.5544 
0.1683 
0.9328 
0.6072 

Fl
oo
d 

int
en
sif
ica
tio
n 

Transition to water and flooded 
areas: 
Flooded areas*  
Agricultural land**  
Rangeland** 
Persistence: 
Flooded areas 
Agricultural land  
Rangeland 

 
 

1519 
894 

1328 
 

1530 
904 

1369 

 
 

0.8268 
0.8088 
0.7816 

 
0.5712 
0.8448 
0.6932 

 
 

0.8266 
0.8013 
0.7862 

 
0.5707 
0.8355 
0.6759 

 
 

0.6533 
0.6026 
0.5724 

 
0.1414 
0.6709 
0.3517 

De
sol
atio
n 

Transition:  
Agricultural land to water 
Agricultural land to forest 
Agricultural land to flooded 
areas 
Agricultural land to built-up 
areas 
Persistence:  
Agricultural land 

 
2200 
2293 
1623 

 
1836 

 
 

2292 

 
0.2900 
0.6208 
0.6212 

 
0.6100 

 
 

0.2492 

 
0.2474 
0.6170 
0.6963 

 
0.5855 

 
 

0.2501 

 
0.0593 
0.5213 
0.6204 

 
0.4819 

 
 

0.0626 

 
Both SVM and MLP are commonly used 
machine learning algorithms for classification 
tasks, including LULC change prediction. The 
choice of algorithm can depend on various 
factors, and the fact that SVM demonstrated 
higher accuracy than MLP may be influenced by 
several reasons: (1) SVM is known for its 
effectiveness in handling high-dimensional data 
and complex decision boundaries. Considering 
that our LULC change prediction task involves 
a non-linear and complex relationship between 
input features, SVM performs better than MLP; 
(2) SVM can be more robust when dealing with 
small datasets. In the current study, the dataset 
is limited (considering dependent variables for 5 
years), and due to this, SVM generalizes better 
than MLP, which could be more prone to 
overfitting; (3) the performance of both SVM 
and MLP heavily depends on parameter tuning. 
It's possible that the hyperparameters of the 
SVM were tuned more effectively for this 
specific dataset, leading to better performance; 
(4) SVM is effective in high-dimensional spaces 
and excels in capturing complex relationships, 
while MLP might require more data to 
effectively train its parameters, especially when 
dealing with a high-dimensional feature space; 
(5) SVM is generally robust to outliers present 

in the dataset, and it can utilize the kernel trick 
to transform the input space into a higher-
dimensional space, making it more adaptable to 
non-linear relationships. It's important to note 
that the performance of machine learning 
algorithms is highly dataset-dependent, and 
utilizing SVM is more effective for small 
datasets than employing MLP. The higher 
accuracy is demonstrated by the model with the 
following parameters (Table 8). 
 

Table 8. Model parameters and accuracy 

Parameter Value 
Modelling approach SVM learning algorithm 
Sub-model Urbanization 
Kernel type Radial Basis Function 
Epsilon (ε) 0.0100 
Class number 8 
Total CV number 7510 
Total sample number 20000 
Overall CV accuracy 0.8385 
Overall out-of-sample 
accuracy 

0.8388 

Overall skill measure 0.6776 
Note: CV - cross-validation. 
 
To validate the model, the Kappa statistic (k-
index) for quantity and location was computed 
by comparing the hard simulation with the 
reference map of 2022 (Table 9). 
 
Table 9. The k-index values of the simulated LULC map 

of 2022 

Index Value 
Kno 0.9695 

Klocation 0.9724 
KlocationStrata 0.9724 

Kstandard 0.9547 
 
The statistics reveal that all kappa index values 
surpass the satisfactory range (≥ 80%). The 
overall disagreement between the reference and 
predictive maps is generally low, primarily 
attributed to allocation errors (0.0160) rather 
than quantity errors (0.0107). Despite the 
presence of allocation errors, the overall 
agreement between the actual and simulated 
maps is high, reaching 97.34% (Figure 6). The 
validation and assessment of the results from the 
simulation of (LULC) changes were conducted 
using the ROC curve to evaluate prediction 
accuracy. The area under the ROC curve serves 
as an indicator of the forecasting model's ability 
to correctly anticipate the occurrence or non-
occurrence of pre-defined 'events' (Arora et al., 
2021; Myslyva et al., 2023). 
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Figure 6. Successes and errors of the simulation 

 
The model's prediction rate has been computed 
and is depicted in Figure 7. 
 

 
Figure 7. Performance of the model based on SVM for 

the LULC change prediction 
 

The predictive model demonstrates an accuracy 
of 89% (AUC = 0.891), indicating a 'very good' 
performance level. The developed model was 
then used to predict future land use and land 
cover (LULC) changes in 2026 and 2031 under 
the business-as-usual (BAU) scenario.  
The simulated area extent, gains, losses, and  
net change (in hectares) are depicted in Figures 
8-10. 
Notably, in the context of land use land cover 
modelling, a business-as-usual scenario 
involves projecting future land use patterns 
based on the assumption that current trends and 
practices persist without significant alterations.  
Considering this, the expansion of built-up areas 
(8.6% and 8.3%) is expected by 2026 and 2031, 
respectively. In contrast, the forest-covered area 
(0.1%), agricultural land (0.7%), and rangeland 
(0.4%) are expected to decrease, while bare 
ground will experience a decrease until 2026 
(23.4% of the area) and subsequent growth of 
3.7% by 2031. 
 

 

 

 

Figure 8. Existing (A) LULC map for 2022 and projected 
LULC maps for 2026 (B) and 2031 (C) 

 

 

 
Figure 9. Gains and losses (ha) graph between  

2022-2026 (A) and 2026-2031 (B) 
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Figure 10. Net change (ha) graph between 2022-2026 

(A) and 2026-2031 (B) 
 

The forecast indicates that the Wanica and 
Nickerie districts will experience the most 
significant changes, while minor LULC changes 
are expected in Para and Marowijne. In general, 
two significant trends will be observed in the 
upcoming 10-year period. One involves the 
drastic expansion of urbanization, and the 
second is associated with deforestation and the 
shortage of agricultural land (Table 10). 
 

Table 10. Descriptions and explanations for observed 
trends in LULC changes (2022-2031 predictions) 

LULC 
class Trend Explanation Required activities 

Water  
and flooded 
areas 

The water area will 
remain constant  

A stable water area 
indicates a consistent 
presence of water bodies, 
such as rivers, lakes, and 
coastal areas. This 
stability is vital for 
maintaining ecosystem 
health and supporting 
various aquatic life forms 

Sustainable water 
management practices 
are crucial to support 
wetland ecosystems 

Forest The forest area will 
gradually decline 
(net changes will 
amount to 0.1%) 

Forest reduction is 
influenced by logging and 
infrastructure 
development 

Sustainable forestry 
management practices 
are crucial to balance 
conservation efforts and 
economic activities 

Agricultural 
land 

Agricultural land 
will decrease slightly 
(net changes will 
amount to 0.7%) 

This trend indicates a 
shift in land use due to 
urbanization  

Supporting the balance 
between food production 
needs and environmental 
conservation is essential 

Built-up areas Built-up areas will 
significantly 
increase (net 
changes will amount 
to more than 8.0%) 

The substantial growth in 
built-up areas signals 
urbanization and 
infrastructural 
development which drives 
the expansion of 
residential, commercial, 
and industrial spaces 

Implementing crucial 
measures, such as 
sustainable urban 
planning practices, 
enforcing zoning 
regulations and engaging 
local communities in 
decision-making, is 
essential 

Bare ground The bare ground will 
fluctuate (an annual 
decrease of 23% for 
2022–2026 and, an 
annual increase of 
4% for 2026-2031) 

Fluctuations in bare 
ground could result from 
natural processes like 
erosion, reforestation 
efforts, or human 
activities 

Monitoring and 
managing bare ground 
are essential for 
preventing soil 
degradation and 
maintaining ecosystem 
health 

Rangeland Rangeland will 
gradually decrease 
(net changes will 
amount to more than 
0.4%) 

The decline in rangeland 
is influenced by factors 
such as urban expansion 
or changes in land use 
practices 

Sustainable land 
management strategies 
are crucial to balance 
urban expansion with the 
preservation of natural 
habitats 

 
Considering that Suriname faces a significant 
shortage of land resources suitable for building, 
infrastructure development, and agricultural 
activity, coupled with the continued use of the 
most productive land parcels for building 
construction, there is a pressing need to 
implement an urgent land management plan. 

Such a plan will help mitigate the negative 
consequences of irrational land use during the 
last decade. 
 
CONCLUSIONS 
 
The transformation in land use and land cover 
within the coastal plain area of Suriname from 
2017 to 2031 was simulated using various 
geospatial methodologies alongside the SVM 
machine learning algorithm. This research 
utilized a range of dependent/driver and 
independent spatial datasets. TerrSet software 
was employed for assessing LULC changes, 
including statistical and graphical analyses of 
gains, losses, and net changes. 
Topographical features, proximity variables, 
and evidence likelihood (related to the transition 
from rangeland to other land classes) were 
identified as the primary drivers of LULC 
change. Evidence likelihood is the most 
influential parameter, while distance from roads 
has the least effect in this study. To enhance the 
accuracy of future predictions, it is advisable to 
expand the list of independent variables to 
include additional information, such as weather 
data. When considering scenarios other than 
business-as-usual, it becomes necessary to 
augment the list of driving variables with 
geospatial data corresponding to the distance 
from deforested areas and areas with illegal 
mining. 
Two machine learning algorithms, MLP and 
SVM, were tested for their ability to predict 
LULC change. To evaluate the accuracy and 
reliability of MLP and SVM algorithms-based 
predictive models, skill measures and accuracy 
rates were utilized. The SVM algorithm-based 
predictive model, which included the 
urbanization transition sub-model (bare ground, 
agricultural land, rangeland, and forest 
converted to built-up areas), demonstrated an 
overall skill of 0.7 and an accuracy of 83.85%. 
It's important to note that the performance of 
machine learning algorithms can be highly 
dataset-dependent, and the superiority of one 
algorithm over another may vary across 
different applications and datasets. 
The prediction results for 2022 from the SVM 
algorithm-based model were further validated 
using the VALIDATE and ArcSDM modules, 
based on the actual reference image (2022). The 

B 
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derived Kappa statistics (95%) and AUC value 
(89%) ensure the reliability of the SVM 
algorithm-based model in predicting land use 
changes. Future LULC changes for 2026 and 
2031 were forecasted, considering the business-
as-usual scenario. The model predicts an 
expansion of built-up areas between 2026 and 
2030, accompanied by a reduction in forest, 
agricultural land, and rangeland. 
Given that individual districts in Suriname 
possess distinct characteristics that can 
significantly influence future land use change 
predictions, forthcoming studies should 
undertake an examination to develop more 
detailed tailored predictive models. These 
models should encompass specific driving 
variables that are highly significant for each 
respective district 
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