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Abstract

The second criterion of comparison for the convergence of series or improper integrals, also called the limit comparison
test, is a little bit unnatural and difficult for students when it comes to finding the comparison term. In this paper we give
a refinement of this criteria via equivalents, which is more natural. We say that two sequences or two functions are
equivalent if their quotient tends to 1 at some point. When two sequences or two integrable functions are equivalent, then
their associated series or integrals have the same nature. We also present different applications of this method for both
series and improper integrals.
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INTRODUCTION We will write in a simpler manner Y, x, for
series or (x,) for sequences when the starting
The notion of series index is not important.

In mathematics, a series represents a sum with
an infinite number of terms. We are interested in ~ The convergence of a series with positive
such a sum can be correctly defined, that is if it ~ terms

has a limit, and, if possible, to calculate its sum. ~ We denote S,, = x; + x, + --- + x,, the partial
A series with a finite sum is called convergent. sum of order » of a series:

Definition 1. Let (x,,) =1 be a positive sequence

of real numbers (Colojoara, 1983). A series with Z *n

positive terms is a sum with an infinite number nzk

of terms of the form: Remark 3. A sequence of real numbers (a,,) is

Xy 4 X e Xy o called convergent to a number L € R if:

which can be written in a more compact way: #_IBO Xp =L
i Definition 2. The series ), x,, is convergent if
an or an and only if the sequence (S,) e convergent,
n=1 n=1 more exactly:
Remark 1. def .
an=a(=) lim S, =a
. n—oo
Z n # rltl—rgo n where:
nz . .
f:r;';:rk 2. X is called the general term of the Rirfaiallcll? "}}Leesz&\?::;:nizrlz;a series is not

Ob on. A seri tart f tural affected by its starting term.
servation. A series may start from any natura A theorem of Weierstrass states that a

index, for example: . . .
> p monotonous sequence (i.e. increasing or

¢ decreasing) and bounded is convergent.
Xt Xpgpr Tt X+ = Z Xn = Z Xn Therefore, the nature (convergence) of a series
n=k nzk with positive terms is:
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convergent (if bounded): Z X, =a€R
divergent (if unbounded): Z Xy = ©

Remark 5. In general, it is easier to study the
convergence of a series, because there exist
certain criteria, than to calculate its sum.

Classical series

There are two important series that can be used
in the comparison tests:

1) The generalized harmonic series:

1 1
F_1+2_a+3_a+
nz=1
{conv, a>1
div, a<1
Example 1.
1_1+1+1+ _712
nz 22 32 6
nz1

is convergent because @ = 2 > 1.
2
Remark 6. The fact that its sum is % can be

proved with advanced techniques of
trigonometry and complex analysis. This shows
that a series’ sum is sometimes hard or even
impossible to calculate.

Example 2.
S-S heiiids
—_= —_—= —_ -_ e = 0O
n nt 2 3
n=1 n=1

is divergent because ¢ = 1 < 1.
Remark 7. The divergence of this series is a little
bit unnatural for a beginner, as its general term

becomes smaller and smaller (% - O).
2) The geometric series:
Za"=1+a+a2+---
n=0
1
is {conv = 1-a fora<1

div, fora=1
Example:

3n 3
nz0 nz0

. 1 . .
is convergent because a = 3< 1, and its sum is:

Z(l)"_ 1 1 1 3
3/ 1—-a 1-1 2 2
3 3

nz0
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Improper integrals

The classical Riemann integral of an integrable
function f:[a, b] = Rcan be called a proper
integral.

b
J fx)dx = J f(x)dx
“ [ab]
Definition 3. Let a € R. We define improper
integrals of the form:

where:
-1 c R is an interval and f(x) is a function
Riemann integrable.

f)dx =] f(x)dx =lim | f(x)dx
[ e[ reoss =y

[a,0)

f ]f(x)dx = f_:f(x)dx = tlLr{lm J;af(x)dx

(—o,a

flx)dx =f_ fx)dx

R =f_:f(x)dx +faoof(x)dx

where:

- a can be any real number, most commonly 0 or
L.

Remark 8. Notations for lateral limits of a
function in one variable at a point a € R:

The limit to the left:
ls = fs(a) = lim f(x) = f(a—0) = f(a-)

x—-a
x<a

The limit to the right:
lg = fa(@) = lim f(x) = f(a+0) = f(a+)

4)1=1a,b)
_____ N t
| reodx= [ redx=tin [ r@ax
[a.b) a t<p @
5)1 = (a,b]
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_____ .
[ reoax= [ feodx =1im
(a,b] at t>a
6)1 = (a,b)

fbf(x)dx

f fl)dx = f

(a,b) a+

b—

f(x)dx

b—

flx)dx

Cc

= Cf(x)dx +

where:

-c € (a,b) can be chosen arbitrary, most

a+b
commonly ¢ = -

f f(x)dxzf

a+

” flx)dx

(a,0)

c oo
= | f(x)dx +f flx)dx
a+ c
where:
- ¢ € (a, ) can chose arbitrary.

8) 1 =(—,a)

f fx)dx = f:: flx)dx
(=.a)

= f_cwf(x)dx +fc_oof(x)dx

where:

— ¢ € (—o,a) can chosen arbitrary.
Definition 4. An improper integral is called
convergent if it is finite and divergent if it is
infinite or does not exist.

There are many connections between series and
improper integrals: the terminology for
convergence, similar criteria, the integral
criterion for series, etc.

Theorem 1. The integral criterion for positive
series (Boboc, 1999; Miculescu, 2010).

Let f: [a, ) — R, be a positive and decreasing

> o [ oo

nza
The series has the same nature with the integral.
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Remark 9. The nature of the integral faw f(x)dx
doesn’t depend on the number a.

MATERIALS AND METHODS

When studying the convergence of a series or
improper integral, the classical comparison test
with inequalities is sometimes difficult to apply
and very sensitive to signs. There is a more
practical second comparison test that uses limits.
Theorem 1. Limit comparison criterion for
series (Boboc, 1999; Golet et al., 2014).

If lim = = [ then if:

n—oo Yn

Byl=0> -
b) X div = V, div
o | @) Z X cOMV S Yy, conv
)l=o0=
b) Zyn div= ) x,div

Remark 10. In this form, the limit comparison
criterion may by difficult to apply, beacause the
comparison therm y, may by difficult and
artificial to find. Thus, we propose a more
natural way to find the comparison therm, using
the language of equivalents.

Definition 5.

We say that two sequences (x,) and (y,,) are
equivalent and we write:

def

. X
Xp~Vp & lim =2 =1

n—co Yn
(Stanasila, 1981; Martin, 2008).
Remark 11. Any expression is equivalent to its
dominant term (if it has one!).
For example, 3n2 — n + 5~3n?, because by the
"degree rule" one has
3n?-n+5

3n2 - 3 =
Remark 12. The order of the elementary
sequences at infinity (n — 0):

Inn « nk « a® K n! K« n"

3

where:
k>0,a>1.

By "x < y" we mean that x is "a lot smaller"
than y, which imply fundamental limits such:
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Inn k a
llm—k—Ohm——O lim — = oo etc.
n—oo N —ooam n-oo lnn

Definition 6. Let f,g:R—> R. We f(x) and
g(x) are equivalent at a point a € R =
[—o0, +0] and we wrlte

f(x) g(x)
if: ¢

[

Hegw

Remark 13. If f (x) g(x) we simply write:
(ee]

G~ g(x).

Remark 14. The order of the eclementary

functions at infinity (x — o0):

Inx < x¥ « a* « x*
where: k > 0,a > 1,
which imply fundamental limits such:

. Inx . xk . a*
lim —= = 0,lim = = 0, lim — = oo etc.
n—-oo X n—oo @ n—-oo INnXx

Theorem 2. For two serles with positive terms:

an)’n=>an~2yn .

Proof. This is a particular case written in the
language of equivalents for the main case a) of
Theorem 1.

If x,,~Yy, then lim 2

n—o Yn

Thus, the two series have the same nature:

Theorem 3. Limit comparison criterion for
improper integrals defined on an infinite interval
(Nicolescu et al., 1971).

Let f and g be two positive and integrable
functions with llm u Eg =1l

Then if:

The two integrals have the same nature.
b)l=0

c)l=o

903

0

(oo}

b) g(x)dx dw S| fo)dx div

a

Remark 15. A similar criterion can be defined at
—oo. We leave that to the reader.

Remark 16. The theorem is valid even if fand g
are positive on a neighbourghood of oo.

Theorem 4. The limit comparison criterion with
equivalents for improper integrals is defined on
an infinite interval.

Let f and g be two positive and integrable
functions. If f(x)~ g(x), then:

J- f(x)dx~ f g(x)dx
a a
The integrals have the same nature.

Proof. The fact that f(x)~4 g(x) means that:
[l = lim 29 1
x—00 g(x)
And we apply case a) of the Theorem 3.

Theorem 5. Limit comparison criterion for
improper integrals defined on a finite interval.
Let f and g be two positive and integrable

functions w1th llm L E ; l.
Then if:
..... b b
a)l € (0, 00)5 f(x)dx~ fg(x)dx
a+ a+

The two integrals have the same nature.
b)l=0

b b
{a) g(x)dx conv 5 f(x)dx conv
ﬁ a+ b a;—
b) ff(x)dx div S g(x)dx div
a+ a+
c)l=o0
b b
a) ff(x)dx conv5 g(x)dx conv
:> a+t+ b a-il;
b) f (x)dx div 5 f(x)dx div
a+ a+
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Remark 17. A similar criterion can be defined at
b—.

Theorem 6. Limit comparison criterion with
equivalents for improper integrals defined on a
finite interval.

Let f and g be two positive and integrable
functlons

b
The integrals have the same nature.

RESULTS AND DISCUSSIONS

Applications for series of the limit
comparison criteria with equivalents
Example 1. Find the nature of the series:
1
Solution. By Theorem 2
Z 1 Z 1 1 1
= ) == —
nz1 2Vn+1 n=1 2Vn 2 nx1 N2
div
(a=><1)

Example 2. Study the convergence of the series:

Z 2n + n?
ns—2n3+1

nz1

Solution.

Z 2n + n?
ns—2n3+1 n5 n3

nz n=1
conv
(a=3>1)
Example 3.
n—2
~ VvnZ +1
Solution.

Y i ]

nz1

=141+ = oo (div)

Example 4.
Z n+7
nn+1)(n+2)
nz2

Z n+7 n 1
1 N n-n_ 2
nzln(n + )(n+ ) nzln nen nzln
conv
(a=2>1)
The equivalence criterion can be mixed with

other criteria, as in:

Solution.

Example 5
n+3vn+1
2"+ 1Inn

nz1
Solution.

n+3vn+1 Z

"2"+1lnn 2n
n=1

Now, we leave to the reader to show that the
series of the equivalent is convergent via
D’Alembert’s quotient criterion (the ratio test):

If lim = =1
( <13 X, conv
=>1 1>12) x, div

In are some situations, the application of the
equivalence criteria is surprising.

Example 6.
n+1
()
n

n=1

Solution. Because lim0 In@+) _ 1, it results:
xX—
In(1 + x) ~X
0

Taking x = % — 0, we obtain:

1\ 1
ln(1+—)~—
n/ n

Therefore,



Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering. Vol. XIII, 2024
Print ISSN 2285-6064, CD-ROM ISSN 2285-6072, Online ISSN 2393-5138, ISSN-L 2285-6064

Sometimes, applying the equivalence criterion is (conv, a =2 >1).
impossible, as in:

Example 7. Remark 21. Be easy calculus, it can be shown
that
ZW i)fb 1 :{conv,/1<1
n=2 a+ (x a)l o (div), 1=>1
2 11)f _{ conv, 1 <1
Remark 18. m is not equivalent with P (b- %)7L oo (div), 1 =1

because their quotient does’t tend to 1. Example 4. Study t}ie convergence:

Solution. The series is written in minimal form,

so no simpler equivalent can be found (it is self- f Nemmwwi dx
. v1-—x

equivalent!). We leave to the reader to prove that )

the series is convergent using D’Alembert’s SO[””O”- We apply Theorem 6:

criterion.

Remark 19. Equivalents can successfully be f V1 - xz f\/ 1- x)(l +x)

applied situations such: i

»»»»» 1 f 1
— | —dx
F(n)’ Z(F(n)) Zk F(n) f /(1—x)(1+1 \/70 (1—x)%
n=2 G =2 G G(n) (conv, A= E < 1.
where:
- F(n)si G(n) are polynqmials, and k €N is  Remark 22. The integral is improper because the
fixed, but it cannot be apphe(lic, for example, for: numerator is undefined at 1. Generally, authors
F(n) don’t specify the limit to the right or to the left,
Z (G(n)) it can be deduced from the context.
Loz . Example 5.
because 1% is indetermination case for function
hmltS. f m d,x
Applications for improper integrals of the Solution. f +dx =
limit comparison criteria with equivalents E=x)°(x-1)
———dx + — 1 _dx
Example 1. Find the nature of the integral: f (- x)s(" 1) f (3-2)3(x-1)
© X Iy Iz
f dx We have:
x5+ 2x* —x34+7
1 1 1 S S
Solution. We apply Theorem 4: \/(3—x)5(x—1) I\/(3—1)5(x—1) T a2z x-1
o 1
fl x5+2x4—x3+7 dx~ f _d f Fdx _ 1 ) 1
(conv, a =4 >1). w2 (x — 1)%
Remark 20. Be easy calculus, it can be shown Thus:
that: s
1 conv, a>1 f (3- x)5(1 PE dx ~ [, ~ 1dx,
dx = (div) <1 (x-1)2
[ee]
1 o “= (conv,/1=§<1).
Example 2.
[e%e} 1 [e%e} 1 o 1 .
Jo T dx~ i == dx~ f T=dx = J; —dx We have:
(div, a=1<1). 1 1 _ 1 1
(3-2)5(x~1) ; (3-0)5(3-1)  VZ +(B-%)°
Example 3.

o (x+1)2 o0 x2 o 1
J. dx~ [, Zdx~ [, —dx

3 x*+sin2x x* 2
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_r
V2 (3-x):

dx ~ f23 ;E dx,
(3-x)2

(div=oc0, 2 =2> 1),

3 1
L=, [orams

Therefore,
I =1 +1, =conv + o0 = oo (div)

Some applications of series or improper
integrals in or outside mathematics

Zeno’s arrow paradox in philosophy
Zeno of Elea (490-430 b.Ch.) was a pre-Socratic
greek philosopher.

R

b

In the arrow paradox (Huggett, 2024), Zeno
states that for motion to occur, an object must
change its position. He gives an example of an
arrow in flight (Figure 1). He states that at
instant of time, the arrow is neither moving to
where it is, nor to where it is not. It cannot move
to where it is not, because no time elapses for it
to move there; it cannot move to where it is,
because it is already there. In other words, at
every instant of time there is no motion
occurring. If everything is motionless at every
instant, and time is entirely composed of
instants, then motion is impossible.

ta

dp
--r.«{:',pllr

v 4
Fat]

hhhﬁ
Sk

o
=
i}

A
iy}

12

SL0S

f64

1/4 1/8 1116

1/32

1

Figure 1. Zeno’s paradox
http://www .naturphilosophie.co.uk/zenos-paradoxes-or-what-happened-when-achilles-and-the-hare-decided-to-outfox-
the-legendary-tortoise

In fact, this paradox shows that time is infinitely
divisible, and can be better understood with the

series:

L
2 4 8 77
which explains that, when adding all the

segments, the arrow reaches its target.

Taylor series

Every elementary function can be locally
approximated around the point a by a sum of its
derivatives of the form:

f™(a)
f@ =) -y
n=0
For example:
x3 x5 x7
Slnx=x—§+a—ﬁ+..., x ER

Taking a sufficient number of terms, one may
approximate any functions at a point with a
convenient number of decimals.

Taylor series are the main tool for
approximating the values of elementary
functions on any ordinary scientific calculator,
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although there are some additional methods of
improving the accuracy.

Graphical interpretation of Riemann and
improper integrals

It is well known that the Riemann integral of a
positive function f: [a, b] — R is the are of the
subgraph above the abscissa. This property can
also be extended to improper integrals. Thus, an
important role of integrals is in calculating areas,
volumes, and lengths.

f

Figure 2. Geometric interpretation of the improper
integral



Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering. Vol. XIII, 2024
Print ISSN 2285-6064, CD-ROM ISSN 2285-6072, Online ISSN 2393-5138, ISSN-L 2285-6064

The area of the subgraph of a positive function
represented in Figure 2 is:

A= f f(x)dx

a
For example, in physics, if f(x) represents the
value of a force, the integral represents the
mechanical work of the force.

Fourier series

They were first used in the early 1800’s by
Joseph Fourier in order to find solutions to the
heat equation.

Nowadays they have applications in physics,
signal processing, image processing, conversion
of special data into frequency data etc. (Budau
et al., 2023; Calmuc et al., 2022).

A usual Fourier series is a representation of a
periodic function f(x) on [—m, 7] as a series of
sines and cosines of the form:

1
f(x) =5 +Zancosnx+2bncosnx

nz1 nz1

The coefficients have the following formulas:

ay = ff(x)dx
an:% Jf(x)cosnxdx

1
bn=; ff(x)sinnxdx
=TT

CONCLUSIONS

Integrals and series play an important role in, or
outside mathematics and they are closely related
to the overall progress of science and humanity.
The limit comparison criteria with equivalents
for series with positive terms or improper
integrals are very useful and natural techniques.
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Of course, as other convergence criteria, they
can’t be used for computing sums or integrals in
case of convergence.
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