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Abstract  
 
The paper aims to use machine-learning-based algorithms in order to enable and empower the integration of soft sensors 
for improving the economic sustainability of integrated multi-trophic recirculating aquaculture systems (IMRAS) through 
efficient and accurate water quality monitoring of nitrate (NO3), the main key parameter for maintaining the sustainability 
of the IMRAS in various production scenarios. A 30-day trial was conducted in a sturgeon–tarragon IMRAS to develop 
a NO3 soft sensor, based on a series of predictors such as pH, temperature, NH4, NO2, NO3, conductivity (EC), P2O5, Ca 
and Mg, as well as to identify the prediction model peculiarities in various exploitation scenarios generated by the crops 
culture density. The results reveal the effectiveness of different learning algorithms as MLR and XGBoost (>80% 
accuracy) in developing solutions for supporting the water quality monitoring process in IMRASs, concluding that the 
intensity of production technologies must be considered as a determinant factor in upscaling the solutions to industrial 
level.   
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INTRODUCTION 
 
The European Committee (EC) policy 
strategies, through its plan of transition from a 
Blue to a Green economy, emphasize the 
strategic orientation towards sustainable and 
competitive aquaculture within the European 
Union (EU) borders, which is targeted to be 
implemented within the period 2021-2030. 
In order to support this desideratum, research 
oriented towards the identification of scalable 
and replicable innovative technical and 
technological solutions, based on artificial 
intelligence, which are able to support the 
maximization of sustainability degree associated 
with the emergent integrated production 
technologies, a multi-disciplinary analytical 

framework must be considered and research 
niches that can improve various peculiar 
processes with the technology must be tackled.  
Since aquaculture is a major part of Blue 
Economic - Development, the shift toward a 
Green Economy imposes the extent of 
sustainable aquaculture systems and practices, 
limiting therefore their negative impact on the 
environment, mostly associated with the degree 
of production intensity. Thus, previous studies 
(Paepae et al., 2021; Petrea et al., 2023a) present 
integrated aquaponics as a feasible solution for 
limiting aquaculture wastes by using circular 
economy principles that consist of valorizing the 
wastes for obtaining a second crop production 
that can also be commercialized and, therefore, 
can contribute to the increase of economic 
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competitiveness, a fact confirmed by Bosma et 
al. (2017), Petrea et al. (2019), Asciuto at al. 
(2019) and Costache et al. (2021). 
However, integrating aquaponics into already 
existing aquaculture conventional or 
recirculating aquaculture systems-based farms is 
a complex process, both from technical and 
technological perspectives, as resulting from 
various studies (Yildiz et al., 2017; Goddek et 
al., 2019). The most important process within an 
aquaponic system is related to nutrient 
management – thus, continuous water quality 
monitoring is imposed to limit potential 
dysfunctionalities which can have fatal impacts 
both for fish and plant production.  
According to a previous study (Petrea et al., 
2023b), nitrate is considered one of the most 
important water quality parameters in 
aquaculture systems and has an accumulation 
trend – this situation can be efficiently exploited 
by aquaponics technologies since nitrate is an 
essential nutrient during the plants culture 
process.  
Petrea et al. (2023a) confirmed that soft sensors 
can be successfully used in aquaponics multi-
trophic systems in order to accurately predict the 
concentration of essential water quality 
parameters.  
However, since each integrated aquaponic 
technology has its peculiarities related to various 
variables such as plant and fish species used, 
technology production intensity (e.g. feed input, 
fish stocking density, plant production density 
etc.) or aquaponics techniques used (e.g. 
floating rafts, nutrient film technique, substrate 
techniques etc.), the develop of artificial 
intelligence (AI) - based soft sensors cannot 
have yet, a universal applicability.  
Thus, if the generative character of AI will be 
exploited in future, considering the soft sensors’ 
analytical frameworks, this limitation will be 
overcome. 
The present research targets to apply machine-
learning-based algorithms in order to enable and 
empower the integration of soft sensors for 
improving the economic sustainability of 
integrated multi-trophic recirculating 
aquaculture systems (IMRAS) through efficient 
and accurate water quality monitoring of nitrate, 
considering a series of predictors, specific for 
IMRAS and various technological scenarios. 
 

MATERIALS AND METHODS  
 
Experimental design, data collection and 
dataset description 
In order to create the dataset used for developing 
the soft sensor for determining water NO3 
concentration in an aquaponic system, a 30-day 
trial was conducted in a sturgeon (A. baeri) – 
tarragon (Artemisia dracunculus L.) IMRAS 
where light expanded clay aggregate (LECA) 
aquaponic substrate was used as plant growing 
substrate and 3 different tarragon culture 
densities were applied, together with the control 
variant, as follows: 
o D1 – culture density of tarragon -                    

80 plants/m2;  
o D2 – culture density of tarragon -                     

60 plants/m2; 
o D3 – culture density of tarragon -                      

40 plants/m2; 
o C – Control variant – no plants were used, 

only LECA plants’ culture substrate. 
During the experimental trial, the following 
water quality parameters concentrations were 
monitored: NH4 (ammonium), NO2 (nitrites), 
NO3 (nitrates), EC (electroconductivity), P2O5 
(phosphorus pentoxide), Ca (calcium) and Mg 
(magnesium). Thus, all parameters were 
determined using Libelium® Smart Water 
Sensor Platform Adds Ion Monitoring 
(Zaragoza, Spain) - the equipment is fully 
described by Petrea et al., 2023a. However, P2O5 

was the only parameter determined by using 
laboratory analytical procedures – sensors were 
calibrated before the trial and validation of the 
data was performed by crosschecking the sensor 
results with the results obtained by applying the 
classical analytical determination procedures. 
The sampling points were both at the inlet (In) 
and outlet (Out) of the aquaponics modules, for 
each experimental variant, to create a decision-
support analytical framework, oriented towards 
NO3, that can be developed, further on, in order 
to serve as a solution for determining the real-
time NO3 removal rate.  
The resulting dataset was divided into 2 groups, 
as follows: the 1st group contains 70% of the data 
allocated for training, while the 2nd group has the 
rest 30% of data, that are to be used for the 
validation process. Database pre-processing is 
described by Petrea et al. (2023a), while the 
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predictor’s standardization was performed as 
presented by Petrea et al. (2020). 
 
Machine learning data-processing methods 
and workflow 
In order to perform the analytical framework of 
the present study, the workflow diagram 
described in Figure 1 was applied.  
 

 
Figure 1. The workflow for enabling and empowering 
the integration of soft sensors in IMRAS, considering 

various technological scenarios 
 
Thus, a number of 2 machine learning-based 
supervised algorithms were used, namely 
multiple linear regression (MLR) and XGBoost 
(XGB), in order to generate high-metrics 
predictions of NO3 concentration in water, 
considering 6 main predictors, associated with 
each of the 4 technological scenarios (D1, D2, 
D3, C), both at the inlet (In) and outlet (Out) of 
the aquaponic units.  
The Python NumPy library was used for 
obtaining the correlation matrix and Seaborn 
library to visualize it, as presented by Petrea et 
al., 2023b. 
The MLR model equation is presented below 
(eq. 1), according to Petrea et al. (2023a): 

 (1) 
where:  

• ypredict is the dependent variable;  

• x1, x2……xn are the n independent 
variables;  

• b is the intercept indicating the Y value 
when all the predictors are zeros;  

• a1, a2 ... an are the coefficients of 
predictors, reflecting the contribution of 
each independent variable in predicting 
the dependent variable; ɛ̝ is the residual 
term indicating the difference between 
the actual and the fitted response value. 

The XGBoost core-concept is presented in eq. 2. 

                            (2) 
where:  

• 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 is the measured value; 𝑦𝑦𝑦𝑦 
• 𝑖̂𝑖𝑖𝑖 is the predicted value of each tree; 𝑙𝑙𝑙𝑙 is 

the loss function, which is used to 
measure the total prediction error; 

• ∑Ω(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) is the regularization term. 
 
RESULTS AND DISCUSSIONS  
 
Correlation matrix 
The matrixes reveal that, in the case of D1, the 
highest significant (p<0.05) positive 
correlations are recorded between the pH and 
EC, P2O5 and NO3, respectively, while the 
significant (p<0.05) high negative correlations 
are observed between EC – P2O5, P2O5 – NO3 
and EC – NO3 (Figure 2). 
 

 
Figure 2. Correlation matrix for water quality parameter 

dataset associated with D1 technological scenario 
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In the case of D2, the highest significant 
(p<0.05) positive correlations encountered at D1 
are confirmed, the pH dynamics conditioning 
the EC, P2O5 and NO3, fact valid both for In and 
Out sampling points (Figure 3). In terms of 
significant (p<0.05) high negative correlations, 
outside EC – P2O5 – NO3 conditioning triangle, 
Ca – NH4 and Mg – NO3 relations are also 
pointed out as negative and significant (p<0.05) 
(Figure 3). 
 

 
Figure 3. Correlation matrix for water quality parameter 

dataset associated with D2 technological scenario 
 
The matrixes in the case of D3 reveal the highest 
significant (p<0.05) positive correlations 
recorded between the pH and EC, P2O5 and NO3, 
while the significant (p<0.05) high negative 
correlations are observed between EC – P2O5 – 
NO3 – NH4 conditioning nexus, Ca- EC and Mg, 
NO2 and pH In – Out (Figure 4). 
In the case of the C experimental variant 
correlation matrix (Figure 5), the highest 
significant (p<0.05) positive correlations were 
recorded, similar to D1, D2 and D3, between the 
pH and EC, P2O5 and NO3, while the significant 
(p<0.05) high negative correlations are observed 
between EC, NH4, P2O5, Mg, Ca In – Out, EC – 
NO3, EC-NH4, Ca – NO3 and P2O5 – NO3.  
It can be observed that D1, D2 and D3 
experimental variants present less correlation 
between the concentration of the parameter in In 
vs. Out sampling points, respectively, compared 
to C, a fact that can be due to tarragon dynamics 
to absorb nutrients that cannot be structured in a 
pattern based on correlation matrixes. Thus, to 

perform an in-depth analysis of the dataset 
conditionalities as a base tool for future 
development of soft sensors, AI-based machine 
learning algorithms must be applied. 
 

 
Figure 4. Correlation matrix for water quality parameter 

dataset associated with D3 technological scenario 
 

 
Figure 5. Correlation matrix for water quality parameter 

dataset associated with D4 technological scenario 
 
MLR prediction models 
In the case of D1, the MLR-based prediction 
models reveal that NH4 and Mg can be 
considered the main predictors for determining 
the NO3 concentration in IMRAS technological 
water, both for In (eq. 3) and Out (eq. 4) 
sampling points, since they are associated with 
the highest coefficient values within the model. 
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All parameters were used as predictors since 
their VIF values were lower than 10.  
The models’ metrics reveal good accuracy, with 
an Rsq value of 83.24 for the NO3 D1in prediction 
model (eq. 3) and 80.45 for the NO3 D1out 

prediction model (eq. 4). However, a positive 
predictive relation can be observed between 
NO3 and the predictors EC and NH4, while 
negative predictive weight is associated to Ca 
and Mg, a fact valid for both In and Out 
sampling points.   
 
o NO3 D1in = 1059.48 – 30.69 Ca D1in + 2.75 EC D1in – 

46.96 Mg D1in +1325.72 NH4 D1in                                  (3)                                  
o NO3 D1out = 951.23 – 25.92 Ca D1out + 2.25 EC D1out – 

38.93 Mg D1out + 1301.42 NH4 D1out                                           (4) 
 
In the case of D2, the MLR-based prediction 
models reveal that most of the NO3 dynamics 
can be explained by NH4, a fact valid for both In 
and Out sampling points (eq.5 and eq.6). 
However, the Ca and Mg predicting weight 
increases in the case of NO3 D2in (eq.5), 
compared to NO3 D2out (eq.6). All parameters 
were used as predictors since their VIF values 
were lower than 10. The models’ metrics reveal 
good accuracy, with an Rsq value of 86.12 for 
the NO3 D2in prediction model (eq.5) and 81.87 for 
the NO3 D2out prediction model (eq.6). 
 
o NO3 D2in = -632.16 – 12.55 Ca D2in + 2.12 EC D2in – 16.5 

Mg D2in - 199.77 NH4 D2in                                                        (5) 
o NO3 D2out = -422.30 – 1.38 Ca D2out + 0.83 EC D2out – 3.28 

Mg D2out - 157.13 NH4 D2out                                                    (6) 
 
In the case of D3, the MLR-based prediction 
models reveal that NO3 prediction is mostly 
conditioned by NH4 concentration in the 
technological water, in both In and Out sampling 
points (eq. 7 and eq. 8). However, the NO3 D3in 

model emphasizes the low weight of Ca in the 
prediction equation (eq. 7), compared to NO3 
D3out. Also, it can be concluded that both EC and 
Mg share a similar trend of predictive weight 
(eq. 7 and eq. 8). The models’ metrics reveal 
good accuracy, with an Rsq value of 83.34 for 
the NO3 D3in prediction model (eq.7) and 80.52 for 
the NO3 D3out prediction model (eq.8). The NH4 
has a direct trend in relation to the predicted 
variable, in the case of Out sampling point, 
while in the In sampling point, the relation is 
indirect (negative). This can be explained by the 
autoregulation capacity of the aquaponic unit, in 
terms of the water quality matrix. 

o NO3 D3in = -585.46 + 0.06 Ca D3in + 0.77 EC D3in + 
3.05 Mg D3in - 421.42 NH4 D3in                                                    (7) 

o NO3 D3Out = -239.95 + 0.55 Ca D3Out + 0.41 EC D3Out + 
1.86 Mg D3Out + 33.54 NH4 D3Out                                         (8) 

 
The C experimental variant presents good 
accuracy metrics, with an Rsq value of 89.58 for 
the NO3 Cin prediction model (eq. 9) and 84.32 for 
the NO3 Cout prediction model (eq. 10). In both 
cases, the NH4 has the highest weight in 
predicting the NO3, followed by Ca and Mg. 
However, it can be pointed out that Ca has an 
indirect trend in relation to the predicted 
variable, in the case of Out sampling point, 
while in the In sampling point, the relation is 
direct (positive).  
 
o NO3 Cin = -318.82 + 4.40 Ca Cin + 0.18 EC Cin + 3.49 

Mg Cin - 155.86 NH4 Cin                                                                    (9) 
o NO3 C out = -574.48 - 1.83 Ca C out + 0.89 EC C out + 

2.41 Mg C out - 241.66 NH4 C out                                               (10) 
 
In the end, it can be partially concluded that the 
MLR models emphasize that NH4 has a 
considerable weight, being recommended to be 
used as the main predictor for the development 
of the NO3 soft sensors, applicable in IMRAS, 
in various technological scenarios.  
 
XGBoost prediction models 
The XGBoost prediction models, applied by 
using the D1 dataset, reveal that for In sampling 
point (Figure 6), the In-EC and In-Ca are the 
only predictors that present future importance 
associated with the prediction of the In-NO3 
concentration in the technological water matrix. 
However, in the case of the Out sampling point 
(Figure 7), the Ca has the highest future 
importance, followed by EC.  
The metrics of both D1 prediction models 
(Figures 6, 7) indicate good accuracy, as 
follows: Rsq of 91.37 for the In sampling point 
and 89.34 for the Out sampling point, 
respectively. 
The XGBoost prediction models, applied by 
using the D2 dataset, reveal that for In sampling 
point (Figure 8), the In-EC, In-P2O5 and In-Ca 
are the only predictors that present future 
importance in predicting the In-NO3 
concentration at the level of technological water. 
However, in the case of the Out sampling point 
(Figure 9), the Ca has the highest future 
importance, followed by EC, while the P2O5 has 
no associated value for feature importance.  
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Thus, it can be concluded that the variation of 
tarragon culture density from 80 plants/m2 to 60 
plants/m2 has an impact on predictors feature 
importance when predicting the NO3 
concentration from aquaponics modules inlet 
sampling point, recommending, therefore, to 
consider P2O5 among EC and Ca, as main 
predictors.  
The metrics of both D2 prediction models 
(Figures 8, 9) indicate good accuracy, better 
than D1 models, as follows: Rsq of 93.12 for the 
In sampling point and 90.44 for the Out 
sampling point, respectively. 
 

 
Figure 6. The predictors feature importance in predicting 

NO3 concentration at D1-In 
 

 
Figure 7. The predictors feature importance in predicting 

NO3 concentration at D1-Out 
 
 

 
Figure 8. The predictors feature importance in predicting 

NO3 concentration at D2-In 

 

 
Figure 9. The predictors feature importance in predicting 

NO3 concentration at D2-Out 
 
The NO3 - XGBoost prediction models applied 
by using the D3 dataset reveal that, for both 
sampling points, the EC is considered as the 
main predictor, followed by Ca (Figures 10, 11).  
Thus, the findings confirm, generally, the 
predictors ranking resulted from MLR models, 
presented above. However, the metrics of both 
D3 prediction models (Figures 10, 11) indicate 
good accuracy, better than D1 and D2 models, 
as follows: Rsq of 95.55 for the In sampling 
point and 93.12 for the Out sampling point, 
respectively.  
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Figure 10. The predictors feature importance in 

predicting NO3 concentration at D3-In 
 

 
Figure 11. The predictors feature importance in 

predicting NO3 concentration at D3-Out 
 

The C experimental variant confirms the Ca 
feature importance, as a predictor, in predicting 
the NO3 concentration of technological water, in 
the In sampling point (Figure 12). However, at 
the Out sampling point, the situation is different, 
with the EC recording the highest feature 
importance among the predictors (Figure 13). 
Also, compared to In sampling point, the model 
for predicting the NO3 concentration in water at 
the aquaponics units outlet attributes a feature 
importance value, also, to P2O5, outside EC and 
Ca.  
The metrics of both C prediction models (Figure 
12, 13) indicate good accuracy, better than D1, 
D2 and D3 models, as follows: Rsq of 97.10 for 
the In sampling point and 95.14 for the Out 
sampling point, respectively. This can be 

explained by the lack of plant biomass at the 
level of control variant aquaponics modules – 
thus, this makes the model more stable and 
emphasizes the complexity degree in identifying 
high-accuracy models for various aquaponics 
culture density scenarios.  
 

 
Figure 12. The predictors feature importance in 

predicting NO3 concentration at C-In 
 

 
Figure 13. The predictors feature importance in 

predicting NO3 concentration at C-Out 
 
The metrics of both C prediction models 
(Figures 12, 13) indicate good accuracy, better 
than D1, D2 and D3 models, as follows: Rsq of 
97.10 for the In sampling point and 95.14 for the 
Out sampling point, respectively. This can be 
explained by the lack of plant biomass at the 
level of control variant aquaponics modules – 
thus, this makes the model more stable and 
emphasizes the complexity degree in identifying 
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high-accuracy models for various aquaponics 
culture density scenarios.  
Also, it can be concluded that for all 
experimental variants, the accuracy metrics 
recorded by applying XGBoost algorithms are 
superior compared to the metrics resulting 
because of applying MLR algorithms.  
Similar to other studies, this study has its own 
limitations in terms of dataset dimension, as well 
as experimental framework. However, the study 
results (prediction models) are associated with 
high accuracy metrics, a fact that makes them 
reliable for upscaling in real industrial 
conditions. 
 
CONCLUSIONS  
 
The results reveal the effectiveness of different 
learning algorithms as MLR and XGBoost 
(>80% accuracy) in developing solutions for 
supporting the water quality monitoring process 
in IMRASs, concluding that the intensity of 
production technologies must be considered as a 
determinant factor in upscaling the solutions to 
industrial level. 
It is recommended that future research should 
take into consideration the application of other 
machine learning algorithms such as GAM, 
SVM, Random Forest, GBM, CNN, Stacked 
ensemble, DRF or Naïve Bayesian in order to 
have a complete background of the technical 
aspects that may be used for future development 
of the analytical framework for black-box and 
grey-box soft sensors. 
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