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Abstract 
 
Table grape is a crop with a high nutritional value and frequent control is a guarantee of high quality and yields. The 
application instruments and methods for remote monitoring in obtaining information on the status of the vineyard will 
allow farmers to respond adequately to changes in plant development and grape quality. The aim of this study is to use 
non-destructive methods, such as satellite monitoring in the prediction of phenological changes that occur in the vine 
crop.  The object of the study is a commercial table grape vineyard Vitis vinifera cv Velika in the land of village Granit, 
Stara Zagora district, Bulgaria in the period 2021-2023. NDVI was calculated using data from Sentinel 2 satellite in the 
main growth stages. The physiological state of the vines and the growth behaviour in the crop were monitored.  An 
analysis was made of the relationship between the dynamics of the growth and NDVI to predict the yields. 
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INTRODUCTION 
 
Climate change poses a significant challenge to 
the global grape industry as it has the potential 
to disrupt vineyard growth. The profitability and 
growth of the wine industry in different regions 
can be affected by climate change, as the 
development of plantations is highly dependent 
on weather conditions in the short-term and 
climate conditions in the long-term (Sun et al., 
2023). 
Environmental conditions play a crucial role in 
determining not only yield but also the potential 
quality of grapes. Furthermore, profitability for 
growers in certain regions may be stimulated by 
optimizing yields and reducing production 
costs, while in other regions it may be stimulated 
by producing higher quality grapes. The factors 
that influence profitability include market 
access and growing conditions. This 
information is based on a study by Dr. Qun Sun 
published in 2023. 
The growth conditions of vines during critical 
phenological stages can significantly affect the 
quality and quantity of grapes. Field 
observations of vine growth stages are 
insufficient to capture the spatial variability of 
vine conditions. Predicting grape yield using 
traditional methods requires many grape 
samples. Satellite imagery analysis is used more 
and more in many domains, from micro - to 

macro scale (Herbei et al., 2021) and remote 
sensing data can provide detailed spatial and 
temporal information on vine development, 
which is useful for vineyard management (Liang 
et al., 2017; Sabbatini et al., 2016). 
The size and distribution of the sample are 
determined by the rows and spacing between the 
vines, which means that spatial variability must 
be considered. Yield estimation systems are 
based on sampling: (a) the number of grapevines 
per hectare; (b) the number of grape berries per 
vine, with most of them; and (c) the weight of 
the grape (Clingeleffer, 2016; Wolpert et al., 
1992; Tarara et al., 2013). Manufacturers must 
determine whether, when, and how many fruits 
to remove during thinning. Therefore, daily 
observation for optimal vineyard management 
through ground measurements is unlikely to be 
representative of field conditions and is 
expensive to install and maintain, especially for 
large and distributed production systems. 
Remote sensing data has significant advantages 
over other monitoring techniques as it provides 
a timely, synoptic, and up-to-date overview of 
actual crop growing conditions over large areas 
at several stages during the growing season.  
Strong relationships have been found to exist 
between satellite-based vegetation indices, such 
as NDVI, and vine development in vineyards 
(Cunha et al., 2010; Johnson et al., 2003; Hall et 
al., 2002). 
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Remotely sensed data can be used to infer vine 
shape and size (Hall et al., 2001), predict 
phenols and grape colour (Lamb et al., 2004), 
and differentiate cultivars in vineyards (Brady et 
al., 2000; Arkun et al., 2001). Different 
approaches exist for using vegetation indices 
and their relationships with analytical 
measurements. These can be classified into two 
main categories: using empirical relationships 
between vegetation indices or by inverting a 
physical radiative transfer mode (Ganguly et al., 
2012; Dong et al., 2016; Huang et al., 2015). 
The aim of this study is to use non-destructive 
methods, such as satellite monitoring for 
establishing a relationship between analytical 
measurement and vegetation indices in the 
prediction of phenological changes that occur in 
the vine crop. 
 
MATERIALS AND METHODS 
 
This study focuses on the open field situated in 
the South-Central region of Bulgaria, 
specifically in the village of Granit, municipality 
of Bratya Daskalovi, Stara Zagora district 
(Figure 1). 
 

 
Figure 1. Location of study area  

(Google Earth 17.06.2022) 
L42°14'51.69"N B25° 9'6.36"E 

 
Experimental design and treatments 
NDVI was obtained from Copernicus Land 
Monitoring Servies as a daily update of 
Normalised Difference Vegetation Index 
provided at pan-European level and in near real 
time. The data were available at 10 m x 10 m 
spatial resolution from Sentinel-2 HR 
multispectral satellite imagery (according to 
Data viewer - Copernicus Land Monitoring 
Service).  

The Normalized Difference Vegetation Index 
(NDVI) is an effective index for quantifying 
green vegetation. It is a measure of the state of 
vegetation health based on how plants reflect 
light at certain wavelengths. The value range of 
the NDVI is -1 to 1. Negative values of NDVI 
(values approaching -1) correspond to water. 
Values close to zero (-0.1 to 0.1) generally 
correspond to barren areas of rock, sand, or 
snow. Low, positive values represent shrub and 
grassland (approximately 0.2 to 0.4), while high 
values indicate good health and growth of the 
vegetation (values approaching 1). 
The formula of the NDVI is: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁

 

where: 
- NIR is near-infrared light; 
- RED is red light. 
For Sentinel-2, the index looks like this: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝐵𝐵𝐵𝐵8 − 𝐵𝐵𝐵𝐵4
𝐵𝐵𝐵𝐵8 + 𝐵𝐵𝐵𝐵4

  

where:  
- B8 = 842 nm;  
- B4 = 665 nm. 
In the event of the plant becoming dehydrated, 
diseased, afflicted by a disease etc., the spongy 
layer will deteriorate, resulting in a change in the 
plant's ability to reflect rather than absorb near-
infrared light.  
Using the NDVI data in the study regions, the 
changes in vegetation cover present in the area 
and the trend in occurrence of agricultural 
drought can be studied (Sruthi et al., 2015). 
The images and sample raster values from 
NDVI imagery were processed by QGIS 3.10.  
Time series imageries were downloaded for the 
main stages of the vine plant in the experimental 
field and in situ data collection for 2021-2023. 
The growth stages are calculated in the Days Of 
the Year (DOY). The correlations between the 
studied variables were obtained by regression 
analysis in Excel Microsoft 365 and were valid 
within the time range studied. 
In situ data collection was conducted between 
2021 and 2023 in a 30-hectare vineyard. 
Observations were made on a 1-hectare 
experimental plot. Phenology and growth of 40 
vines, arranged in 4 replicates of 10 vines in two 
rows, were monitored within the target field.  
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The planting distance is 2.80 m between the 
rows and 1.20 m between the vines in each row 
and stem Gyuyo formation. Pruning involved 
leaving two fruit canes and two spurs. The 
climate data for temperature and precipitation 
has been recorded by the Meteobot climate 
station in the plantation. The vineyard is 
cultivated under irrigation. 
In situ measurements were carried out during six 
main stages of grape development: budding, 
appearance of first leaf, flowering, veraison, 
technological maturity, and leaf fall. The plants 
on which the growth dynamics were monitored 
were not pruned to account for the maximum 
length of the shoots. Linear growth was recorded 
until the shoots reached their maximum height. 
Measurements began when the shoots were 15-
20 cm long and were taken every 10-15 days.  
The growth dynamics of the shoots have been 
traced and a correlation has been established 
between the values of NDVI and the length of 
the shoots, based on the DOY. 

RESULTS AND DISCUSSIONS 
 
The object of the study is a typical table grape 
variety Velika, created in 1997 in the IASS 
"Obraztsov chiflik", Rousse. The main 
distribution area is in Bulgaria, Italy, 
Macedonia, Morocco. It belongs to the early 
ripening grape varieties with ripening period 
from 15 to 20 August. It is suitable for growing 
in warm regions with a lack of late spring and 
early autumn frosts. The development of the 
vines from forced dormancy to vegetation 
occurs when the average daily temperature is 
10°C In the frame of the experiment, this 
temperature occurred in late March and early 
April in all three years. The selected cultivar and 
vineyard are in a transitional-continental zone, 
where we have periods of irregular precipitation 
and large temperature amplitude. The 
experimental years had a growing season length 
of 208-215 days (Table 1.) 

Table 1. Phenological development of the Velika cultivar (Granit) 

Year Budding First leaf Flowering Veraison Maturity Fall leaf Vegetation 
period 

2021 10.04 28.04 8.06 30.07 15.09 4.11 208 
2022 28.03 10.04 31.05 20.08 19.09 28.10 215 
2023 26.03. 5.04 14.06 28.08 16.09 26.10 215 

The Meteobot station's meteorological model 
data is used to determine the vineyard's stages. 
The results indicate a direct correlation between 
the availability of minimum temperatures 
required for phenological growth and the 
development of the winter buds and dormant 
buds in the vine during the experimental years. 
In 2022, a climatic anomaly was observed in 
terms of vine phenology. The data from soil and 
atmosphere temperature sensors showed that 
growth stage development was primarily 
temperature dependent. However, in 2022, less 
precipitation was recorded in the spring, leading 
to budding as early as 10 April. The lack of 
rainfall caused the vines to stop developing, 
resulting in a delay in the following 
phenophases (Figures 2 and 3). 
The application of satellite imagery in the early 
stages of grapevine development and the values 
of the vegetation index (NDVI) from the 
beginning of active vegetation (130 DOY) 
would provide practical information to grape 
producers for conducting measures that 

reactivate growth processes and transition to 
subsequent phenophases. The growth of shoots 
in viticulture indicates the physiological state of 
the vineyard and its readiness to produce high-
quality grape raw material. 
 

 
Figure 2. Climate characteristics  

for the experimental period 

1 2 3 4 5 6 7 8 9 10 11 12
2021 2,9 4,8 5,6 11 18 21 26 26 18 11 7,5 3,3
2022 1,5 4,1 4,6 13 18 22 25 25 19 13 9,8 4,9
2023 5,1 4,6 8,6 12 16 21 26 26 22 16 8,6 3,2

0

5

10

15

20

25

30

te
m

pr
et

ur
e 

(C
⸰ )

months

2021 2022 2023



753

Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering. Vol. XIII, 2024
Print ISSN 2285-6064, CD-ROM ISSN 2285-6072, Online ISSN 2393-5138, ISSN-L 2285-6064  

 
Figure 3. Precipitation for the experimental period 

 
The results of our three-year experiment show 
that the formation of leaf mass on the shoot 
depends on environmental factors and the care 
provided by the producer. The growth in the first 
measurement dates indicates lower activity, 
which is due to temperature fluctuations and 
cold soil.  
With the increase in the average daily 
temperature, the growth rate accelerates and 
reaches 4-5 cm per day. The observation 
indicates that most of the new vegetative growth 
is formed within 160-180 days from the 
beginning of vegetation (200-220 DOY) (Figure 
4).  
The obtained dependencies between the length 
of the shoots in the active vegetation period have 
a high degree of multiple correlation. During the  
first two years of the study period, the growth is 
described with a second-degree polynomial 
curve and equation due to the delayed growth. 
However, for the year 2023, the relationship is 
linear. The multiple correlation coefficient R2 is 
0.96-0.98 for the three years. 
The relationship between NDVI values during 
the active vegetation period and the occurrence 
of the four main stages in the vineyard was 
investigated.  
The relationships found showed very high and 
high correlation coefficients throughout the 
active period. For 2021 R2 = 0.98, R2 = 0.78 for 
2022. The lowest value of the coefficient is 
recorded in 2023, which is characterized by the 
lowest shoot growth and high temperatures 
(Figure 5). 
 

 
a) 2021 

 
b) 2022 

 
c) 2023 

Figure 4. Shoot growth dynamics over the three 
experimental years 

 
To reduce the duration of analytical in situ 
measurements, a correlation was discovered 
between shoot growth and reported NDVI 
values. This enables in situ observations to be 
limited to the main vegetation stages, with the 
remaining data interpreted by predicting 
vegetation index and shoot length data.  
The downloaded images from the NDVI time 
series cover only the four main phases from 
April to mid-September. The measured shoot 
lengths are for a period of active growth from 

1 2 3 4 5 6 7 8 9 10 11 12
2021 116 25,5 50 87,8 37,5 36,8 29,3 60,8 3,10 167 21 93
2022 19,2 35,0 21,7 47,5 38,2 86,7 2,00 138, 32,7 3,25 59,7 41,0
2023 0,00 14,7 24,2 61,7 111, 36,7 15,0 37,0 7,50 3,50 59,0 84,2
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May to July, over an average of 15 days, based 
on the occurrence of the phenophases. The 
equations that relate NDVI and DOY to 
vegetation stages have a wider validity than the 
measured shoot lengths. They can be used to 
predict results and derive a mathematical model 
for the relationship between NDVI values and 
shoot length.  
 

 
a) 2021 

 
b) 2022 

 
c) 2023 

Figure 5. Relationship between NDVI values and active 
vegetation stages 

 
The resulting models have a high degree of 
multiple correlation and are a reliable indicator 

for relating satellite data to in situ 
measurements. 
The growth processes are demonstrated based 
on the satellite images and NDVI values. 
Figure 6 presents the mathematical models for 
the three experimental years. 
 

 
a) 2021 

 
b) 2022 

 
c) 2023 

Figure 6. Mathematical model of dependence between 
NDVI value and length of the shoots 

 
CONCLUSIONS 
 
The study presents information on the 
phenological and growth processes of the vine 
during its annual development cycle.  
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The prediction of growth dynamics and NDVI 
values will enable the optimization of pruning 
timing in vineyards. 
The use of digital tools, such as satellite images, 
enables us to apply appropriate agronomic 
practices to restore the growth and vigour 
potential of the vine crop in the event of a delay 
in the phenological phases and the formation of 
vegetative mass. 
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