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Abstract

Land use changes monitoring and predicting, as well as assessing their impact on carbon storage dynamics, play a pivotal
role in addressing environmental challenges and ensuring effective land use management. This study aims to identify
land use changes and their impact on carbon storage in the Marowijne district of Suriname from 2017 to 2024 and predict
changes for 2034. Sentinel-2 images were used to analyze land change patterns and predict future trends. A hybrid
approach combining Markov chain analysis, cellular automata, multilayer perceptron, support vector machines, and
logistic regression was used to forecast future land use dynamics, while InVEST and YASSO models were utilized for
carbon storage and sequestration predictions. The support vector machine-Markov chain hybrid model achieved an
impressive accuracy of over 97%, outperforming other hybrid models. This model is recommended for generating land
use change prediction maps, providing a crucial baseline for sustainable land use management. During the subsequent
decade (2024-2034), the net loss of high-carbon areas is expected to intensify, affecting 15-20% of the district's territory.
The identified spatiotemporal distribution of carbon storage provides valuable insights that will play a key role in
achieving the objectives of Suriname’s national green development strategy.

Key words: land cover change dynamics, hybrid prediction models, carbon storage dynamics.

INTRODUCTION of use or exploitation (Lambin & Meyfroidt,

2019; Alogaili et al., 2021). Additionally, LULC
With significant impact on ecosystems and modelling contributes to climate change
human lives, land use change is one of the major ~ mitigation by improving our understanding of
forces behind environmental and socioeconomic carbon sequestration potential across different
transformations.  Analysing spatiotemporal  land cover types (Deng et al., 2020; Luo et al.,
patterns of land use and land cover (LULC) 2021). Predicting land use change requires
changes provides essential insights for advanced methodologies that analyze historical
sustainable land management and data and observed trends to project future land
environmental conservation (van Ommeren- cover patterns (van Ommeren-Myslyva et al.,
Myslyva et al., 2024; Devi & Shimrah, 2023; 2024). Several modelling approaches are
Girma et al., 2022). Understanding and commonly used, including statistical methods
managing land assets, natural resources, and (Yeh & Liaw, 2021), Cellular Automata (CA)
environmental dynamics requires creating models (Muhammad et al., 2021), Markov
reliable LULC change predictive models (Song Chain (MC) models (Mohamed & Worku,
et al., 2020; Kafy et al., 2021). By providing 2020), hybrid models (Asif et al., 2023), and
valuable data on land potential and degradation multi-agent-based models (Robinson et al.,
risks, these models offer relevant and useful 2021). Among these, hybrid models, which
information on land suitability for various types combine multiple predictive techniques to
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leverage their respective strengths, have shown
greater accuracy in forecasting future LULC
changes. Suriname’s forest ecosystems play a
crucial role in global carbon dynamics, acting
both as a major carbon reservoir and a
significant net carbon sink. Between 2001 and
2023, these forests sequestered approximately
28.3 MtCO:qe per year while emitting an average
of 8.38 MtCOze annually, resulting in a net
carbon sink of -19.9 MtCO:e per year (Global
Forest Watch, 2024). Land use and land cover
are fundamental to carbon regulation, as
changes in LULC deeply affect the capacity of
ecosystems to store and sequester carbon
(Sarathchandra et al., 2021). Suriname's ranking
among the top three countries for High Forest
Cover and Low Deforestation (HFLD)
underscores its pivotal role in mitigating climate
change. However, the ability of its forest
ecosystems to store and sequester carbon is at
risk due to changes in forest cover, whether from
land conversion, land consumption,
deforestation, or other land use and land cover
alterations. To understand how these changes
affect carbon storage, it is essential to evaluate
carbon dynamics and predict the potential
impacts on carbon budgets. This information is
essential for creating land management plans
that safeguard Suriname's forests and strengthen
their ability to combat climate change.
Marowijne — a district in Suriname — is facing
increasing pressure on its land due to factors like
urban growth, infrastructure development, and
natural challenges such as a changing coastline
and the impacts of climate change. To ensure the
region’s long-term sustainability and protect its
natural environment, it's crucial to better
understand these ongoing changes. Despite the
clear occurrence of land use changes in
Marowijne, there is a significant gap in studies
that focus on detecting current trends, predicting
future land use and land cover dynamics, and
assessing the impact of land use changes on
carbon storage and sequestration.

This study aims to achieve four interconnected
objectives: (1) to collect and process geospatial
data on land use and land cover; (2) to evaluate
the accuracy and reliability of hybrid predictive
models combining Markov chains with cellular
automata (CA), multilayer perceptron (MLP),
support vector machines (SVM), and logistic
regression (LR) in predicting future land use
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changes within the Marowijne district of
Suriname; (3) to develop a robust hybrid
simulation model for forecasting LULC changes
over the next 10 years; and (4) to project the
spatial distribution of carbon storage and
sequestration.

MATERIALS AND METHODS

Study area

The area of interest is Marowijne, a district of
Suriname covering a total area of 4803 km?,
situated in the north-eastern part of the country.
Geographically, Marowijne is located to the
north between 4.0° and 5.95° N and to the west
between 54.0° and 54.80° W mostly within the
Young and Old Coastal Plains (only the
southern and south-eastern parts are situated
within the Savanna Belt and Interior Uplands),
ranging from 35 below to 572 m above MSL.
The district is divided into six administrative
units (resorts), namely Galibi, Moengo, Moengo
Tapoe, Wanhatti, Albina and Patamacca.

Figure 1 depicts the research area’s location.
The climate of the study area is tropical-
equatorial (Af) according to the Képpen-Geiger
climate classification. The soil cover is
represented by Umbric Gleysols, Albic
Plinthosols and Albic Arenosols according to
the international soil classification system
(WRB, 2014).

Datasets used. This study used three satellite
image sets to analyze LULC change dynamics
and build a predictive model (Table 1).
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Table 1. Characteristics of data collected

Data Source Acquisition Scale{
year Resolution

Multispectral satellite Esri Land Cover: https://livingatlas.arcgis.com/ladcover/ 58;(7) o

imagery Google Earth Engine Data Catalogue: 2024 m

https://developers.google.com/earth-engine/datasets/catalog/

Digital Elevation Model 30-Meter SRTM Tile Downloader: 2018 1-arcsecond (3601x

(DEM) https://dwtkns.com/srtm30m/ 3601 pixels)

Shape-file with locations | National Environmental Authority: 2018 B

of gold mining activity https://nimos.org/en/about-us/

Shapefile with locations National Land Monitoring System of Suriname GONINI 2023 -

of deforestation areas https://www.gonini.org/

Slope, distance from water bodies (rivers and
creeks), distance from roads, distance from gold
mining and deforestation areas, distance from
key settlements (growth poles), and population
density datasets were developed individually in
2024 with a spatial resolution of 10 m. These
datasets were processed in QGIS 3.34 and
ArcGIS 10.8. The Euclidean distance function
was employed to generate distance maps from
roads, rivers, gold mining areas, and growth
poles using vector data of the features (Kafy et
al., 2021; Gharaibeh et al., 2020). The DEM was
processed in ArcGIS Spatial Analyst tools to
create elevation and slope maps.

Image classification. Sentinel imageries for the
year 2024 were classified using the Random
Forest (RF) classifier and Google Earth Engine
(GEE) capabilities.

Random Forest is a non-parametric, multivariate
technique known for its ability to handle high-
dimensional data and  multicollinearity
effectively. It is also robust against overfitting

and tolerant of suboptimal training data quality
(Hemmerling et al, 2021).To evaluate
classification accuracy, a random sample
comprising 30% of the reference data for 2024
was used. The error matrix, generated in Google
Earth Engine (GEE), included key metrics such
as overall accuracy and the kappa coefficient
(Congalton & Green, 1999; Lu & Weng, 2007).
These metrics are widely recognized for

measuring the agreement between the
classification results and the validation dataset
(Mhanna et al., 2023).

The bands 4-3-2 combination (true colour
combination), bands 8—4-3 combination (false
colour combination) and bands 12-11-4
combination were utilised to perform Sentinel-2
image classification.

A total of 5000 LULC reference data points
representing various land use categories,
including water, forest-covered and flooded
areas, agricultural land, bare ground, built-up
areas, and rangelands, were collected within the
Marowijne district (Table 2).

Table 2. Major land use land cover types used and their descriptions

LULC class Class description

Water bodies

Areas covered by rivers, streams, canals and reservoirs

Forest covered area

Landcover with primary trees, palm, and bamboo with a minimum crown tree cover of 30% with the
potential to reach a canopy height of a minimum of 5 m and a minimum area of 1.0 hectares

Flooded area

Areas of any type of vegetation with obvious intermixing of water throughout a majority of the year;
seasonally flooded area that is a mix of grass/shrub/trees/bare ground

Agricultural land

Includes areas used for perennial and annual crop production, irrigated areas, commercial farms

Bare ground

Includes land areas of exposed soil, bare soil and open areas consisting of sand, rocks and loam

Built-up area

Includes commercial areas, urban, residential, and rural settlements, industrial areas

Rangeland

human plotting (i.e., not a plotted field)

Open areas covered in homogenous grasses with little to no taller vegetation; wild grasses with no obvious

Adopted from Karra et al., 2021. Retrieved from https://www.arcgis.com/

This data was derived from field surveys, expert
knowledge, and high-resolution imagery from
Google Earth Pro (https://earth.google.com/web).
The dataset was then randomly split into two
groups: 70% for training and 30% for validation
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(Aryal et al., 2023; Amindin et al., 2024). The
training data were used to perform supervised
classification, while the validation data were
used to evaluate the accuracy of the resulting
map (Sawant et al. 2023).
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The classification performance was assessed by
calculating key metrics, including overall
accuracy, user accuracy, producer accuracy, and
the kappa coefficient, based on the confusion
matrix. The overall accuracy and kappa
coefficient for the classified LULC map of 2024
were 90% and 84%. This indicates a reliable and
accurate classification of image for analysing
land use/land cover change. Figure 2 shows the
statistical distribution of LULC classes for 2017,
2020, and 2024 within the area of interest.

Driving variables. Driving variables, also
known as driving factors or drivers, represent
various biophysical, socioeconomic, and
infrastructural elements that influence land use
patterns and the processes of land
transformation over time.

Recognizing the need to incorporate the
potential influence of independent variables in
simulating LULC changes (Gharaibeh et al.,
2020), this study considered eight key driving
variables (Figures 3 to 6).
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Figure 2. Area of LULC classes in Marowijne district for the years 2017, 2020, and 2024
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Figure 3. Biophysical driving variables: elevation (a) and slope (b)
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InVEST model. The InVEST carbon pools
model was used to calculate carbon storage and
sequestrate potential of landscapes. The carbon
storage module of the INVEST model assesses
carbon storage using land use types as the units
of measurement for the land surface. It can
effectively evaluate the quantity and value of
ecosystem services. The total carbon storage in
the study area was estimated by multiplying the
total area of different land types by their
corresponding average carbon densities.

The InVEST model was utilized to analyze
carbon storage and predict its spatial distribution
based on simulated LULC in the area by 2034.
The equations are as follows:

Ci = Ciapove + Civeiow + Cisoit + Cldead

e

Crotal = Yieq Ci X Si )

where:

- i is the i-th land use type;

- Ci is the total carbon density of land use
type i (Mg-hm™);

- Ciabave, Cibelow, Cisail and Cidead are the
aboveground, underground, soil, and dead
organic average carbon density of land use type
i (Mg-hm™), respectively;

- Crom 1s the total carbon storage (Mg); Si
is the area of land use type i (hm?);

- nis the number of land use types, with a
value of 7 in this study (Maanan et al., 2019;
Natural Capital Project, 2023; Li et al., 2023).
The carbon density values of the four carbon
pools corresponding to different land use types
are shown in Table 3.
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YASSO Model. Due to the lack of local data
about soil organic matter content the YASSO
model (Yass020) was utilized to assess the soil
carbon pool within the study area. This model is
a dynamic soil carbon model used to simulate
carbon dynamics both in litter and soil organic
matter.

Table 3. Biophysical data used in the IN'VEST carbon
storage and sequestration model (unit: Mg/hm?)

Dead
wood
carbon
pool
4.54
29

Above
ground
carbon

Soil
carbon
pool
27.5%
26.55

Below
ground
carbon pool
3591
10.66

Data
sources

LULC class
name
pool
155.34
4441

Eggleston et
al., 2006;
SBB;
CELOS;
CATIE;
NZCS, 2017
CELOS;
CATIE;
NZCS, 2017;
Zhang et al.,

Forest cover
Flooded area

Rangeland 72.63 8.96 26.55

0
0

0
0

Water bodies
Bare ground

Built-up area 4.11 0.98
2019
Dida et al.,
2021; Natural
Capital
Project, 2023

Agricultural

land a1

0.98

* — value was estimated with YASSO model.

It predicts the decomposition of organic
materials (like plant litter) and the resulting
carbon storage and release over time. The model
uses  climate data  (temperature  and
precipitation) and litter input data to estimate
carbon fluxes and long-term soil carbon storage
(Viskari et al., 2022).

LULC change detection and simulation. The
Land Change Modeler (LCM) within the
TerrSet software was applied to analyze and
project future LULC changes in the study area.

This  data-driven, step-by-step  approach
included change detection, modelling transition
potentials, and forecasting changes based on
historical data from 2017 to 2020. A Markov
probability matrix was employed to estimate the
likelihood of transitions between LULC classes
over time. Transition potential maps,
representing the probability of land use
transitions, were generated using a multi-layer
perceptron neural network (MLP), support
vector machine (SVM)), cellular automata (CA),
and logistic regression (LR).

Validation of model outputs. The validation
process was conducted using the Validate
module in the TerrSet software. This module
calculated kappa statistics to assess the
agreement between the hard prediction and
reference map. The computed metrics included
kappa for no information (Kno), kappa for grid
cell-level location (Kiocation), kappa for stratum-
level location (Kiocationstrata), and kappa standard
(Kstandard) (Girma et al., 2022; Mishra et al.,
2018). Generally, a strong and acceptable kappa
value is considered to be around 80% or higher
(Girma et al., 2022; Gharaibeh et al., 2020). For
forecasting, the LULC maps from 2017 and
2020 were used as input variables to predict the
2034 LULC distribution. The LULC maps from
2024 and 2034 were utilized as input variables
for the InVEST model to predict the 2034
carbon storage and sequestration. Figure 7
illustrates the modelling and validation
processes employed in this study.
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RESULTS AND DISCUSSIONS

To accurately predict future LULC trends over
the next 10 years, it is pivotal to identify and
comprehend past trends in land use and land
cover changes (Girma et al., 2022; Regasa et al.,
2021). The study area underwent notable
landscape transformations and shifts in land use
between 2017 and 2020, as shown in Figures 8§
and 9.

Agricultural land

.

Built-up are
Bare ground
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' ' " i ' ' ' ' '
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Figure 8. Net changes in LULC within the limits of
Marowijne district between 2017 and 2020, hectares

2017 2020

Figure 9. Sankey diagram of LULC classes mutual
conversion from 2017 to 2020

A significant conversion of forest-covered areas
into rangeland indicates ongoing forest loss,
which may negatively impact biodiversity and
carbon storage. Considering that over 86% of
the district's territory is forested, logging and
land clearing for commercial or subsistence
farming have been the primary drivers of
deforestation from 2017 to 2020.

A decrease in flooded areas suggests the drying
or degradation of wetlands, which adversely
affects water resources and ecosystem services.
These changes are driven by altered
hydrological cycles due to climate change, poor
water management, and deforestation. The
notable net increase in rangeland is primarily
attributed to the reduction in forest cover and
bare ground. Although built-up areas constitute
only 0.3% of the total land in the Marowijne
district, they have expanded significantly during
the observed period, signaling the intensification
of urbanization, particularly within established
urban growth poles. The net change in water
bodies is mainly influenced by shifts in forest
cover and bare ground. The outcomes of the
LULC change analysis serve as the foundation
for constructing transition sub-models (Table 4).
Based on these results, considering the most
significant gains and losses for each land use
class, seven sub-transition models were
identified, the best of which was incorporated
into the final predictive model.

This study employed biophysical,
socioeconomic, and proximity-related driving
variables to predict LULC changes. Before
incorporating these drivers into the predictive
model, their explanatory power was evaluated.
Cramer’s V was used to assess the strength of
association, while p-values were applied to
determine statistical significance (Table 5).

Table 4. Transition sub-models and their descriptors

Transition sub-model Land cover transition

Description

Forest covered areas
losses (FLO)

Forest-covered areas to rangeland,
water bodies and built-up area

FLO sub-model describes the process of deforestation where
forest areas are replaced by other land-use types such as
rangeland, water bodies, or urban development

Forest covered areas Bare ground and flooded areas to

Represents reforestation or afforestation where non-forested
areas like bare ground or flooded areas are transformed into

gains (FGA) forest covered areas
forest-covered areas
. This refers to the conversion of land types such as forests,
Water bodies Forest-covered areas, flooded p .
. . flooded areas, bare ground, rangeland, and urban areas into
transformation areas, bare ground, built-up area . . . . .
. water bodies, often due to flooding or human interventions like
(WAT) and rangeland to water bodies

dam creation
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Transition sub-model Land cover transition

Description

Flooded areas to forest covered
areas, rangeland and water bodies

Flooded areas
transformation (FAT)

Involves the draining or reclamation of flooded areas for
conversion into forest, rangeland, possibly for agriculture or
urban development

Bare ground to forest covered
Bare ground &

. areas, flooded areas, water bodies.
transformation (BAT) ’ ’ ’

built-up areas and rangeland

Bare land transitions into various types, including forest cover,
urban areas, or agricultural rangelands, driven by natural
ecological succession or deliberate land-use planning

Forest-covered areas, flooded
areas,

bare ground and rangeland to
built-up areas

Urban expansion (UEX)

Describes urban expansion, where natural landscapes like
forests and rangelands are converted into residential, industrial,
or commercial areas to meet the demands of a growing
population within the key settlements

Rangeland
transformation (RAT)

Rangeland to forest covered areas,
flooded areas and bare ground

Involves the transformation of rangelands into forests or bare
land, often resulting from land reclamation initiatives,
degradation processes, or targeted reforestation efforts.

Table 5. Cramer’s V and p-value for each of the
explanatory variables

Driver variables Cramer’s p-value

\Y%
Distance from deforestation 0.2363 <0.0001
Slope 0.2847 <0.0001
Elevation 0.3888 <0.0001
Distance from water bodies 0.3705 <0.0001
Distance from roads 0.3779 <0.0001
Distance from growth poles 0.4012 <0.0001
Distance from gold mining area 0.4026 <0.0001
Population density 0.4600 <0.0001

According to Eastman (2016), Cramer’s V
values above 0.15 are considered "useful," and
values over 0.4 are seen as "good." In this study,
population density stands out with the highest
Cramer’s V of 0.4600, making it the most
important factor in explaining changes in land
use. The distance from gold mining areas
(0.4026) and from growth poles (0.4012) also
show strong connections, suggesting that mining
and urbanization play major roles in shaping
land-use patterns. The proximity to roads
(0.3779) and water bodies (0.3705) are
somewhat important, reflecting ~ how
accessibility and water resources influence land
changes. Elevation (0.3888) and slope (0.2847)
show a moderate to strong link, emphasizing the
role of terrain features in determining land use.
While distance from areas of deforestation
(0.2363) has the weakest association, it is still
statistically significant. All variables are found
to be significant predictors of land-use change
(p-value <0.0001), with population density,
proximity to gold mining, and growth poles
having the strongest associations. On the other
hand, elevation and slope appear to have the
least impact. This analysis underscores the

significant role of human-driven factors in land-
use changes within the Marowijne district.

To find the most suitable transition sub-model,
accuracy rates were calculated for each hybrid
model and its respective sub-models. The
performance of the LR-MC hybrid model was
assessed using the ROC method
(Myslyva et al., 2023). A summary of the
accuracy assessment for various transition sub-
models is provided in Table 6.

Table 6: Hybrid modelling approaches and their accuracy

Transition sub- | Modelling approach accuracy rate (%)
model MLP-MC SVM-MC LR-MC
FLO 78.95 85.33 72.50
FGA 81.34 91.49 75.20
WAT 64.63 71.50 59.80
FAT 63.97 78.36 57.45
BAT 69.77 73.64 65.30
UEX 92.66 97.14 87.50
RAT 79.45 88.66 73.80

The suitability assessment for various transition
sub-models was not conducted for the CA-MC
predictive model, as it relied on a transition areas
file generated through Markov Chain analysis,
which accounted for all-to-all transitions.
However, due to the limited availability of
historical data on LULC dynamics (covering the
period from 2017 to 2020), this model was still
selected to predict LULC changes. A model
accuracy of 80% or higher is generally
considered acceptable to validate training results
(Gharaibeh et al., 2020; Silva et al., 2020). As a
result, only the LR-MC hybrid model with the
UEX transition sub-model, the MLP-MC hybrid
models with the FGA and UEX transition sub-
models, and the SVM-MC hybrid models with
the FLO, RAT, FGA, and UEX transition sub-
models met the suitability criteria for LULC
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change prediction. However, the overall
agreement between the actual LULC map and
the CA-MC model-simulated map did not reach
the satisfactory range. While previous studies
report higher accuracy rates for MLP (Girma et
al., 2022; Leta et al., 2021; Gharaibeh et al.,
2020; Gibson et al, 2018), this study
demonstrated that SVM is a more effective
machine learning approach, offering a robust
and flexible solution for LULC change
prediction. SVM excels at handling complex,
non-linear relationships between land cover and
its driving factors, resulting in high accuracy.
The superior performance of SVM can also be
attributed to its ability to work effectively with
smaller datasets (Myslyva et al., 2024), such as
the limited four-year dataset used in this study.
This higher accuracy is reflected in the SVM-
MC model, as shown by the parameters in Table
7.

Table 7. Model parameters and accuracy

Parameter Value

Modelling approach SVM learning algorithm
Sub-model Urban expansion (UEX)
Kernel type Radial Basis Function
Epsilon (g) 0.0100

Class number 8

Total cross-validation number 272

Total sample number 2272

Overall cross-validation accuracy | 0.9714

Overall out-of-sample accuracy 0.9751

Overall skill measure 0.9503

To validate the model, the Kappa statistic
(k- index) for quantity and location was
computed by comparing the hard simulation
with the reference map of 2024 (Table 8).

Table 8. The k-index values of the simulated

LULC map of 2024
Index Value
Ko 0.9824
Kiocation 0.9848
0.9848

Kstandard 0.9723

The statistics reveal that all kappa index values
surpass the satisfactory range (> 80%). The
overall disagreement between the reference and
predictive maps is generally low, primarily
attributed to allocation errors (0.0083) rather
than quantity errors (0.0071). Despite the
presence of allocation errors, the overall
agreement between the actual and simulated
maps is high, reaching 98.47%.
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The developed model was then used to predict
future land use changes during next 10 years
under the business-as-usual scenario. Figure 10
illustrates the LULC predictive map for the year
2034 and Figures 11 and 12 depicts the
transformations in LULC classes between 2024
and 2034.

Mocngo)
Riviocn o)

M ocngokTapock

LULC Classes
[ Agricultural land BBl Built-up area Il Forest covered area lll Water bodies
I Bare ground B Flooded area MM Rangeland

6B

ﬂ_ 40
Figure 10. Projected LULC map for the territory
of the Marowijne district for 2034
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Figure 11. Sankey diagram of LULC classes mutual
conversion from 2024 to 2034

The prediction of LULC changes over the next
decade offers key insights into how carbon
storage and sequestration might be impacted
within the area of interest. Between 2024 and
2034, forest-covered areas, essential for storing
carbon, are expected to increase slightly by
3,332.39 ha, which could contribute modestly to
carbon sequestration. On the other hand, the
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significant decrease in rangeland (about
5300 ha) could reduce its ability to act as a
carbon sink, especially if these areas are
converted to built-up spaces.
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Figure 12. Areas where land use types will change
from 2024 to 2034

Urbanization, with built-up areas expanding by
about of 1000 ha, will likely lower the carbon
sequestration potential as vegetation gives way
to impervious surfaces. The rise in flooded areas
(also about 1000 ha) could also affect carbon
dynamics, as wetlands can either store carbon or
release methane, depending on the type of
flooding and vegetation. The small reduction in
bare ground (-4.64 ha) and minimal changes in
agricultural land and water bodies are unlikely
to significantly impact carbon storage. Overall,
these shifts highlight the complex relationships
between land use changes and carbon balance.

The modelling results revealed the spatial and
temporal dynamics of carbon storage and

sequestration in the Marowijne district from
2017 to 2034 (Figures 13 and 14).

In 2017, areas with high carbon storage (1.8—
2.23 MgC/pixel) made up around 40-50% of the
district, while those with moderate storage
(1.35-1.79 MgC/pixel) covered about 30—40%.
Low-storage areas were relatively rare. By 2024,
the high-carbon storage areas had decreased to
roughly 30-35%, and the moderate storage areas
expanded to 40-50%. At the same time, low-
carbon storage areas (0.46-0.89 MgC/pixel) will
began to spread, covering around 15-20% of the
district. Looking ahead to 2034, the high-carbon
storage areas are expected to shrink further to
20-25%, while both low and moderate storage
areas will likely cover about 25-30% and 50-
55%, respectively.

Between 2017 and 2024, reductions in carbon
storage affected about 20-25% of the district,
primarily in coastal zones and areas around
Albina and Moengo. Increases in carbon storage
were limited to less than 5%, reflecting localized
improvements likely due to afforestation.
During the subsequent decade (2024-2034),
reductions in carbon storage are expected to
intensify and spread to broader areas,
particularly in central and coastal zones,
affecting 15-20% of the district and focusing on
already degraded areas. Only a few areas (under
3%) are projected to exhibit increases, further
highlighting a mnet decline in carbon
sequestration potential within the limits of the
study area.
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Figure 13. Dynamic of carbon storage and sequestration in Marowijne district
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Coastal and settlement areas, such as Albina and
Moengo, are expected to experience the most
significant losses in carbon storage, with
reductions impacting 30-35% of the district by
2034. The net loss of high-carbon areas (~15—
25%) between 2017 and 2034 reflects
intensifying anthropogenic pressures and
underscores the urgent need for effective land-
use management strategies.

CONCLUSIONS

The transformation of land use and land cover
(LULC) in the Marowijne district of Suriname
from 2024 to 2034 was simulated using four
hybrid predictive models: Markov chain
analysis with cellular automata (CA-MC),
multilayer perceptron (MLP-MC), support
vector machines (SVM-MC), and logistic
regression (LR-MC). This research utilized a
combination of dependent (driver) and
independent spatial datasets, analyzed through
both statistical and graphical methods. Eight
biophysical, socioeconomic, and proximity
variables were identified as the primary drivers
of LULC change. Based on the land use change
analysis and the most significant gains and
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losses for each land use class, seven sub-
transition models were developed. Among
these, the urban-expansion model was selected
as the most appropriate for inclusion in the final
predictive model.

Accuracy assessments revealed that the SVM-
based model, which incorporated the UEX
transition sub-model for transitions such as the
conversion of forest-covered areas, flooded
areas, bare ground, and rangeland to built-up
areas, achieved an overall accuracy of 97.14%.
While previous studies indicated higher
accuracy for MLP models, the SVM model
proved superior in this study due to its
robustness with small datasets and its ability to
effectively handle high-dimensional data. The
reliability of the SVM model was further
confirmed by a Kappa statistic of 98.47% for
predictions in 2024.

Using the business-as-usual scenario, future
LULC changes for 2034 were forecasted. The
model predicts a slight increase in forest-
covered areas, a significant reduction in
rangelands, expansion of built-up areas, and an
increase in flooded areas. These trends
underscore the intricate interplay between
human activities and environmental factors,
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highlighting the urgent need for sustainable land
management practices.

The expected decline in carbon storage suggests
a decrease in carbon sequestration, which could
have negative effects on both climate regulation
and the overall stability of ecosystems. To
counteract this loss, it's crucial to implement
strategies like reforestation and more stringent
land-use policies.

Given the unique characteristics of different
resorts in Marowijne, future research should aim
to create more specific predictive models that
take into account the particular driving factors of
each separate resort. This would improve the
accuracy of LULC predictions and support more
focused, effective land management practices.
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