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Abstract  
 
Land use changes monitoring and predicting, as well as assessing their impact on carbon storage dynamics, play a pivotal 
role in addressing environmental challenges and ensuring effective land use management. This study aims to identify 
land use changes and their impact on carbon storage in the Marowijne district of Suriname from 2017 to 2024 and predict 
changes for 2034. Sentinel-2 images were used to analyze land change patterns and predict future trends. A hybrid 
approach combining Markov chain analysis, cellular automata, multilayer perceptron, support vector machines, and 
logistic regression was used to forecast future land use dynamics, while InVEST and YASSO models were utilized for 
carbon storage and sequestration predictions. The support vector machine-Markov chain hybrid model achieved an 
impressive accuracy of over 97%, outperforming other hybrid models. This model is recommended for generating land 
use change prediction maps, providing a crucial baseline for sustainable land use management. During the subsequent 
decade (2024-2034), the net loss of high-carbon areas is expected to intensify, affecting 15-20% of the district's territory. 
The identified spatiotemporal distribution of carbon storage provides valuable insights that will play a key role in 
achieving the objectives of Suriname’s national green development strategy. 
 
Key words: land cover change dynamics, hybrid prediction models, carbon storage dynamics. 
 
INTRODUCTION 
 
With significant impact on ecosystems and 
human lives, land use change is one of the major 
forces behind environmental and socioeconomic 
transformations. Analysing spatiotemporal 
patterns of land use and land cover (LULC) 
changes provides essential insights for 
sustainable land management and 
environmental conservation (van Ommeren-
Myslyva et al., 2024; Devi & Shimrah, 2023; 
Girma et al., 2022). Understanding and 
managing land assets, natural resources, and 
environmental dynamics requires creating 
reliable LULC change predictive models (Song 
et al., 2020; Kafy et al., 2021). By providing 
valuable data on land potential and degradation 
risks, these models offer relevant and useful 
information on land suitability for various types 

of use or exploitation (Lambin & Meyfroidt, 
2019; Aloqaili et al., 2021). Additionally, LULC 
modelling contributes to climate change 
mitigation by improving our understanding of 
carbon sequestration potential across different 
land cover types (Deng et al., 2020; Luo et al., 
2021). Predicting land use change requires 
advanced methodologies that analyze historical 
data and observed trends to project future land 
cover patterns (van Ommeren-Myslyva et al., 
2024). Several modelling approaches are 
commonly used, including statistical methods 
(Yeh & Liaw, 2021), Cellular Automata (CA) 
models (Muhammad et al., 2021), Markov 
Chain (MC) models (Mohamed & Worku, 
2020), hybrid models (Asif et al., 2023), and 
multi-agent-based models (Robinson et al., 
2021). Among these, hybrid models, which 
combine multiple predictive techniques to 
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leverage their respective strengths, have shown 
greater accuracy in forecasting future LULC 
changes. Suriname’s forest ecosystems play a 
crucial role in global carbon dynamics, acting 
both as a major carbon reservoir and a 
significant net carbon sink. Between 2001 and 
2023, these forests sequestered approximately 
28.3 MtCO₂e per year while emitting an average 
of 8.38 MtCO₂e annually, resulting in a net 
carbon sink of -19.9 MtCO₂e per year (Global 
Forest Watch, 2024). Land use and land cover 
are fundamental to carbon regulation, as 
changes in LULC deeply affect the capacity of 
ecosystems to store and sequester carbon 
(Sarathchandra et al., 2021). Suriname's ranking 
among the top three countries for High Forest 
Cover and Low Deforestation (HFLD) 
underscores its pivotal role in mitigating climate 
change. However, the ability of its forest 
ecosystems to store and sequester carbon is at 
risk due to changes in forest cover, whether from 
land conversion, land consumption, 
deforestation, or other land use and land cover 
alterations. To understand how these changes 
affect carbon storage, it is essential to evaluate 
carbon dynamics and predict the potential 
impacts on carbon budgets. This information is 
essential for creating land management plans 
that safeguard Suriname's forests and strengthen 
their ability to combat climate change. 
Marowijne – a district in Suriname – is facing 
increasing pressure on its land due to factors like 
urban growth, infrastructure development, and 
natural challenges such as a changing coastline 
and the impacts of climate change. To ensure the 
region’s long-term sustainability and protect its 
natural environment, it's crucial to better 
understand these ongoing changes. Despite the 
clear occurrence of land use changes in 
Marowijne, there is a significant gap in studies 
that focus on detecting current trends, predicting 
future land use and land cover dynamics, and 
assessing the impact of land use changes on 
carbon storage and sequestration.  
This study aims to achieve four interconnected 
objectives: (1) to collect and process geospatial 
data on land use and land cover; (2) to evaluate 
the accuracy and reliability of hybrid predictive 
models combining Markov chains with cellular 
automata (CA), multilayer perceptron (MLP), 
support vector machines (SVM), and logistic 
regression (LR) in predicting future land use 

changes within the Marowijne district of 
Suriname; (3) to develop a robust hybrid 
simulation model for forecasting LULC changes 
over the next 10 years; and (4) to project the 
spatial distribution of carbon storage and 
sequestration.  
 
MATERIALS AND METHODS  
 
Study area  
The area of interest is Marowijne, a district of 
Suriname covering a total area of 4803 km2, 
situated in the north-eastern part of the country. 
Geographically, Marowijne is located to the 
north between 4.0° and 5.95° N and to the west 
between 54.0° and 54.80° W mostly within the 
Young and Old Coastal Plains (only the 
southern and south-eastern parts are situated 
within the Savanna Belt and Interior Uplands), 
ranging from 35 below to 572 m above MSL. 
The district is divided into six administrative 
units (resorts), namely Galibi, Moengo, Moengo 
Tapoe, Wanhatti, Albina and Patamacca.  
Figure 1 depicts the research area’s location. 
The climate of the study area is tropical-
equatorial (Af) according to the Köppen-Geiger 
climate classification. The soil cover is 
represented by Umbric Gleysols, Albic 
Plinthosols and Albic Arenosols according to 
the international soil classification system 
(WRB, 2014). 
Datasets used. This study used three satellite 
image sets to analyze LULC change dynamics 
and build a predictive model (Table 1). 
 

 
Figure1. Location of the study area 



953

Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering. Vol. XIV, 2025
Print ISSN 2285-6064, CD-ROM ISSN 2285-6072, Online ISSN 2393-5138, ISSN-L 2285-6064

 

 

Table 1. Characteristics of data collected 

Data Source Acquisition 
year 

Scale/ 
Resolution 

Multispectral satellite 
imagery 

Esri Land Cover: https://livingatlas.arcgis.com/ladcover/ 2017 
2020 10 m Google Earth Engine Data Catalogue: 

https://developers.google.com/earth-engine/datasets/catalog/ 2024 

Digital Elevation Model 
(DEM) 

30-Meter SRTM Tile Downloader: 
https://dwtkns.com/srtm30m/ 2018 1-arcsecond (3601x 

3601 pixels) 
Shape-file with locations 
of gold mining activity  

National Environmental Authority: 
https://nimos.org/en/about-us/ 2018 – 

Shapefile with locations 
of deforestation areas 

National Land Monitoring System of Suriname GONINI 
https://www.gonini.org/ 2023 – 

 
Slope, distance from water bodies (rivers and 
creeks), distance from roads, distance from gold 
mining and deforestation areas, distance from 
key settlements (growth poles), and population 
density datasets were developed individually in 
2024 with a spatial resolution of 10 m. These 
datasets were processed in QGIS 3.34 and 
ArcGIS 10.8. The Euclidean distance function 
was employed to generate distance maps from 
roads, rivers, gold mining areas, and growth 
poles using vector data of the features (Kafy et 
al., 2021; Gharaibeh et al., 2020). The DEM was 
processed in ArcGIS Spatial Analyst tools to 
create elevation and slope maps. 
Image classification. Sentinel imageries for the 
year 2024 were classified using the Random 
Forest (RF) classifier and Google Earth Engine 
(GEE) capabilities.  
Random Forest is a non-parametric, multivariate 
technique known for its ability to handle high-
dimensional data and multicollinearity 
effectively. It is also robust against overfitting 

and tolerant of suboptimal training data quality 
(Hemmerling et al., 2021).To evaluate 
classification accuracy, a random sample 
comprising 30% of the reference data for 2024 
was used. The error matrix, generated in Google 
Earth Engine (GEE), included key metrics such 
as overall accuracy and the kappa coefficient 
(Congalton & Green, 1999; Lu & Weng, 2007). 
These metrics are widely recognized for 
measuring the agreement between the 
classification results and the validation dataset 
(Mhanna et al., 2023). 
The bands 4–3–2 combination (true colour 
combination), bands 8–4–3 combination (false 
colour combination) and bands 12–11–4 
combination were utilised to perform Sentinel-2 
image classification.  
A total of 5000 LULC reference data points 
representing various land use categories, 
including water, forest-covered and flooded 
areas, agricultural land, bare ground, built-up 
areas, and rangelands, were collected within the 
Marowijne district (Table 2).  

 
Table 2. Major land use land cover types used and their descriptions 

LULC class Class description 
Water bodies Areas covered by rivers, streams, canals and reservoirs 
Forest covered area Landcover with primary trees, palm, and bamboo with a minimum crown tree cover of 30% with the 

potential to reach a canopy height of a minimum of 5 m and a minimum area of 1.0 hectares 
Flooded area Areas of any type of vegetation with obvious intermixing of water throughout a majority of the year; 

seasonally flooded area that is a mix of grass/shrub/trees/bare ground 
Agricultural land Includes areas used for perennial and annual crop production, irrigated areas, commercial farms 
Bare ground Includes land areas of exposed soil, bare soil and open areas consisting of sand, rocks and loam 
Built-up area Includes commercial areas, urban, residential, and rural settlements, industrial areas 
Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild grasses with no obvious 

human plotting (i.e., not a plotted field) 
Adopted from Karra et al., 2021. Retrieved from https://www.arcgis.com/ 

 
This data was derived from field surveys, expert 
knowledge, and high-resolution imagery from 
Google Earth Pro (https://earth.google.com/web). 
The dataset was then randomly split into two 
groups: 70% for training and 30% for validation 

(Aryal et al., 2023; Amindin et al., 2024). The 
training data were used to perform supervised 
classification, while the validation data were 
used to evaluate the accuracy of the resulting 
map (Sawant et al. 2023). 
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The classification performance was assessed by 
calculating key metrics, including overall 
accuracy, user accuracy, producer accuracy, and 
the kappa coefficient, based on the confusion 
matrix. The overall accuracy and kappa 
coefficient for the classified LULC map of 2024 
were 90% and 84%. This indicates a reliable and 
accurate classification of image for analysing 
land use/land cover change. Figure 2 shows the 
statistical distribution of LULC classes for 2017, 
2020, and 2024 within the area of interest. 

Driving variables. Driving variables, also 
known as driving factors or drivers, represent 
various biophysical, socioeconomic, and 
infrastructural elements that influence land use 
patterns and the processes of land 
transformation over time. 
Recognizing the need to incorporate the 
potential influence of independent variables in 
simulating LULC changes (Gharaibeh et al., 
2020), this study considered eight key driving 
variables (Figures 3 to 6). 

 

 
Figure 2. Area of LULC classes in Marowijne district for the years 2017, 2020, and 2024 

 

   
Figure 3. Biophysical driving variables: elevation (a) and slope (b) 

 

 
Figure 4. Socioeconomic driving variables: population density (c)  
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Figure 5. Proximity driving variables:  
distance from roads (d), growth poles (e), areas with 

deforestation (f) and gold mining area (g) 

 
Figure 6. Proximity to water bodies (h) 

 
InVEST model. The InVEST carbon pools 
model was used to calculate carbon storage and 
sequestrate potential of landscapes. The carbon 
storage module of the InVEST model assesses 
carbon storage using land use types as the units 
of measurement for the land surface. It can 
effectively evaluate the quantity and value of 
ecosystem services. The total carbon storage in 
the study area was estimated by multiplying the 
total area of different land types by their 
corresponding average carbon densities. 
The InVEST model was utilized to analyze 
carbon storage and predict its spatial distribution 
based on simulated LULC in the area by 2034. 
The equations are as follows: 
Ci = Ciabove + Cibelow + Cisoil + Cidead   (1) 

 

Ctotal = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1     (2) 

where:  
- i is the i-th land use type;  
- Ci is the total carbon density of land use 

type i (Mg·hm-2);  
- Ciabove, Cibelow, Cisoil and Cidead are the 

aboveground, underground, soil, and dead 
organic average carbon density of land use type 
i (Mg·hm-2), respectively; 

- Ctotal is the total carbon storage (Mg); Si 
is the area of land use type i (hm2);  

- n is the number of land use types, with a 
value of 7 in this study (Maanan et al., 2019; 
Natural Capital Project, 2023; Li et al., 2023).  
The carbon density values of the four carbon 
pools corresponding to different land use types 
are shown in Table 3. 
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YASSO Model. Due to the lack of local data 
about soil organic matter content the YASSO 
model (Yasso20) was utilized to assess the soil 
carbon pool within the study area. This model is 
a dynamic soil carbon model used to simulate 
carbon dynamics both in litter and soil organic 
matter.  
 

Table 3. Biophysical data used in the InVEST carbon 
storage and sequestration model (unit: Mg/hm2) 

LULC class 
name 

Above 
ground 
carbon 
pool 

Below 
ground 

carbon pool 

Soil 
carbon 
pool 

Dead 
wood 
carbon 
pool 

Data 
sources 

Forest cover 155.34 35.91 27.5* 4.54 Eggleston et 
al., 2006; 

SBB; 
CELOS; 
CATIE; 

NZCS, 2017 

Flooded area 44.41 10.66 26.55 2.9 

Rangeland 72.63 8.96 26.55 1.94 

Water bodies 0 0 0 0 CELOS; 
CATIE; 

NZCS, 2017; 
Zhang et al., 

2019 

Bare ground 0 0 0 0 

Built-up area 4.11 0.98 13.5 1.94 

Agricultural 
land 4.11 0.98 13.5 1.94 

Dida et al., 
2021; Natural 

Capital 
Project, 2023 

* – value was estimated with YASSO model. 

 
It predicts the decomposition of organic 
materials (like plant litter) and the resulting 
carbon storage and release over time. The model 
uses climate data (temperature and 
precipitation) and litter input data to estimate 
carbon fluxes and long-term soil carbon storage 
(Viskari et al., 2022).  
LULC change detection and simulation. The 
Land Change Modeler (LCM) within the 
TerrSet software was applied to analyze and 
project future LULC changes in the study area. 

This data-driven, step-by-step approach 
included change detection, modelling transition 
potentials, and forecasting changes based on 
historical data from 2017 to 2020. A Markov 
probability matrix was employed to estimate the 
likelihood of transitions between LULC classes 
over time. Transition potential maps, 
representing the probability of land use 
transitions, were generated using a multi-layer 
perceptron neural network (MLP), support 
vector machine (SVM), cellular automata (CA), 
and logistic regression (LR).  
Validation of model outputs. The validation 
process was conducted using the Validate 
module in the TerrSet software. This module 
calculated kappa statistics to assess the 
agreement between the hard prediction and 
reference map. The computed metrics included 
kappa for no information (Kno), kappa for grid 
cell-level location (Klocation), kappa for stratum-
level location (KlocationStrata), and kappa standard 
(Kstandard) (Girma et al., 2022; Mishra et al., 
2018). Generally, a strong and acceptable kappa 
value is considered to be around 80% or higher 
(Girma et al., 2022; Gharaibeh et al., 2020). For 
forecasting, the LULC maps from 2017 and 
2020 were used as input variables to predict the 
2034 LULC distribution. The LULC maps from 
2024 and 2034 were utilized as input variables 
for the InVEST model to predict the 2034 
carbon storage and sequestration. Figure 7 
illustrates the modelling and validation 
processes employed in this study. 

 

 
Figure 7. Research design flowchart  
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RESULTS AND DISCUSSIONS  
 
To accurately predict future LULC trends over 
the next 10 years, it is pivotal to identify and 
comprehend past trends in land use and land 
cover changes (Girma et al., 2022; Regasa et al., 
2021). The study area underwent notable 
landscape transformations and shifts in land use 
between 2017 and 2020, as shown in Figures 8 
and 9. 
 

 
Figure 8. Net changes in LULC within the limits of 
Marowijne district between 2017 and 2020, hectares 

 

 
2017 2020 

 

Figure 9. Sankey diagram of LULC classes mutual 
conversion from 2017 to 2020 

A significant conversion of forest-covered areas 
into rangeland indicates ongoing forest loss, 
which may negatively impact biodiversity and 
carbon storage. Considering that over 86% of 
the district's territory is forested, logging and 
land clearing for commercial or subsistence 
farming have been the primary drivers of 
deforestation from 2017 to 2020. 
A decrease in flooded areas suggests the drying 
or degradation of wetlands, which adversely 
affects water resources and ecosystem services. 
These changes are driven by altered 
hydrological cycles due to climate change, poor 
water management, and deforestation. The 
notable net increase in rangeland is primarily 
attributed to the reduction in forest cover and 
bare ground. Although built-up areas constitute 
only 0.3% of the total land in the Marowijne 
district, they have expanded significantly during 
the observed period, signaling the intensification 
of urbanization, particularly within established 
urban growth poles. The net change in water 
bodies is mainly influenced by shifts in forest 
cover and bare ground. The outcomes of the 
LULC change analysis serve as the foundation 
for constructing transition sub-models (Table 4).  
Based on these results, considering the most 
significant gains and losses for each land use 
class, seven sub-transition models were 
identified, the best of which was incorporated 
into the final predictive model. 
This study employed biophysical, 
socioeconomic, and proximity-related driving 
variables to predict LULC changes. Before 
incorporating these drivers into the predictive 
model, their explanatory power was evaluated. 
Cramer’s V was used to assess the strength of 
association, while p-values were applied to 
determine statistical significance (Table 5). 

 
Table 4. Transition sub-models and their descriptors 

Transition sub-model Land cover transition Description   

Forest covered areas 
losses (FLO) 

Forest-covered areas to rangeland, 
water bodies and built-up area 

FLO sub-model describes the process of deforestation where 
forest areas are replaced by other land-use types such as 
rangeland, water bodies, or urban development 

Forest covered areas 
gains (FGA) 

Bare ground and flooded areas to 
forest covered areas 

Represents reforestation or afforestation where non-forested 
areas like bare ground or flooded areas are transformed into 
forest-covered areas 

Water bodies 
transformation 
(WAT) 

Forest-covered areas, flooded 
areas, bare ground, built-up area 
and rangeland to water bodies 

This refers to the conversion of land types such as forests, 
flooded areas, bare ground, rangeland, and urban areas into 
water bodies, often due to flooding or human interventions like 
dam creation 
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Transition sub-model Land cover transition Description   

Flooded areas 
transformation (FAT) 

Flooded areas to forest covered 
areas, rangeland and water bodies 

Involves the draining or reclamation of flooded areas for 
conversion into forest, rangeland, possibly for agriculture or 
urban development  

Bare ground 
transformation (BAT) 

Bare ground to forest covered 
areas, flooded areas, water bodies, 
built-up areas and rangeland 

Bare land transitions into various types, including forest cover, 
urban areas, or agricultural rangelands, driven by natural 
ecological succession or deliberate land-use planning 

Urban expansion (UEX) 

Forest-covered areas, flooded 
areas,  
bare ground and rangeland to 
built-up areas 

Describes urban expansion, where natural landscapes like 
forests and rangelands are converted into residential, industrial, 
or commercial areas to meet the demands of a growing 
population within the key settlements 

Rangeland 
transformation (RAT) 

Rangeland to forest covered areas, 
flooded areas and bare ground 

Involves the transformation of rangelands into forests or bare 
land, often resulting from land reclamation initiatives, 
degradation processes, or targeted reforestation efforts. 

 
Table 5. Cramer’s V and p-value for each of the 

explanatory variables 

Driver variables Cramer’s 
V 

p-value 

Distance from deforestation  0.2363 <0.0001 
Slope 0.2847 <0.0001 

Elevation 0.3888 <0.0001 
Distance from water bodies 0.3705 <0.0001 

Distance from roads 0.3779 <0.0001 
Distance from growth poles 0.4012 <0.0001 

Distance from gold mining area 0.4026 <0.0001 
Population density 0.4600 <0.0001 

 
According to Eastman (2016), Cramer’s V 
values above 0.15 are considered "useful," and 
values over 0.4 are seen as "good." In this study, 
population density stands out with the highest 
Cramer’s V of 0.4600, making it the most 
important factor in explaining changes in land 
use. The distance from gold mining areas 
(0.4026) and from growth poles (0.4012) also 
show strong connections, suggesting that mining 
and urbanization play major roles in shaping 
land-use patterns. The proximity to roads 
(0.3779) and water bodies (0.3705) are 
somewhat important, reflecting how 
accessibility and water resources influence land 
changes. Elevation (0.3888) and slope (0.2847) 
show a moderate to strong link, emphasizing the 
role of terrain features in determining land use. 
While distance from areas of deforestation 
(0.2363) has the weakest association, it is still 
statistically significant. All variables are found 
to be significant predictors of land-use change 
(p-value <0.0001), with population density, 
proximity to gold mining, and growth poles 
having the strongest associations. On the other 
hand, elevation and slope appear to have the 
least impact. This analysis underscores the 

significant role of human-driven factors in land-
use changes within the Marowijne district. 
To find the most suitable transition sub-model, 
accuracy rates were calculated for each hybrid 
model and its respective sub-models. The 
performance of the LR-MC hybrid model was 
assessed using the ROC method 
(Myslyva et al., 2023). A summary of the 
accuracy assessment for various transition sub-
models is provided in Table 6. 
 
Table 6: Hybrid modelling approaches and their accuracy 

Transition sub-
model 

Modelling approach accuracy rate (%) 
MLP-MC SVM-MC LR-MC 

FLO 78.95 85.33 72.50 
FGA 81.34 91.49 75.20 
WAT 64.63 71.50 59.80 
FAT 63.97 78.36 57.45 
BAT 69.77 73.64 65.30 
UEX 92.66 97.14 87.50 
RAT 79.45 88.66 73.80 

 
The suitability assessment for various transition 
sub-models was not conducted for the CA-MC 
predictive model, as it relied on a transition areas 
file generated through Markov Chain analysis, 
which accounted for all-to-all transitions. 
However, due to the limited availability of 
historical data on LULC dynamics (covering the 
period from 2017 to 2020), this model was still 
selected to predict LULC changes. A model 
accuracy of 80% or higher is generally 
considered acceptable to validate training results 
(Gharaibeh et al., 2020; Silva et al., 2020). As a 
result, only the LR-MC hybrid model with the 
UEX transition sub-model, the MLP-MC hybrid 
models with the FGA and UEX transition sub-
models, and the SVM-MC hybrid models with 
the FLO, RAT, FGA, and UEX transition sub-
models met the suitability criteria for LULC 
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change prediction. However, the overall 
agreement between the actual LULC map and 
the CA-MC model-simulated map did not reach 
the satisfactory range. While previous studies 
report higher accuracy rates for MLP (Girma et 
al., 2022; Leta et al., 2021; Gharaibeh et al., 
2020; Gibson et al., 2018), this study 
demonstrated that SVM is a more effective 
machine learning approach, offering a robust 
and flexible solution for LULC change 
prediction. SVM excels at handling complex, 
non-linear relationships between land cover and 
its driving factors, resulting in high accuracy. 
The superior performance of SVM can also be 
attributed to its ability to work effectively with 
smaller datasets (Myslyva et al., 2024), such as 
the limited four-year dataset used in this study. 
This higher accuracy is reflected in the SVM-
MC model, as shown by the parameters in Table 
7. 
 

Table 7. Model parameters and accuracy 
Parameter Value 
Modelling approach SVM learning algorithm 
Sub-model Urban expansion (UEX) 
Kernel type Radial Basis Function 
Epsilon (ε) 0.0100 
Class number 8 
Total cross-validation number 272 
Total sample number 2272 
Overall cross-validation accuracy 0.9714 
Overall out-of-sample accuracy 0.9751 
Overall skill measure 0.9503 

 

 
To validate the model, the Kappa statistic 
(k- index) for quantity and location was 
computed by comparing the hard simulation 
with the reference map of 2024 (Table 8). 

 
Table 8. The k-index values of the simulated  

LULC map of 2024 
Index Value 
Kno 0.9824 

Klocation 0.9848 
KlocationStrata 0.9848 

Kstandard 0.9723 
 

 
The statistics reveal that all kappa index values 
surpass the satisfactory range (≥ 80%). The 
overall disagreement between the reference and 
predictive maps is generally low, primarily 
attributed to allocation errors (0.0083) rather 
than quantity errors (0.0071). Despite the 
presence of allocation errors, the overall 
agreement between the actual and simulated 
maps is high, reaching 98.47%. 

The developed model was then used to predict 
future land use changes during next 10 years 
under the business-as-usual scenario. Figure 10 
illustrates the LULC predictive map for the year 
2034 and Figures 11 and 12 depicts the 
transformations in LULC classes between 2024 
and 2034. 
 

 

 
Figure 10. Projected LULC map for the territory  

of the Marowijne district for 2034 

 

 
2024 2034 

 

Figure 11. Sankey diagram of LULC classes mutual 
conversion from 2024 to 2034 

 
The prediction of LULC changes over the next 
decade offers key insights into how carbon 
storage and sequestration might be impacted 
within the area of interest. Between 2024 and 
2034, forest-covered areas, essential for storing 
carbon, are expected to increase slightly by 
3,332.39 ha, which could contribute modestly to 
carbon sequestration. On the other hand, the 
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significant decrease in rangeland (about 
5300 ha) could reduce its ability to act as a 
carbon sink, especially if these areas are 
converted to built-up spaces.  
 

 
Figure 12. Areas where land use types will change  

from 2024 to 2034 
 
Urbanization, with built-up areas expanding by 
about of 1000 ha, will likely lower the carbon 
sequestration potential as vegetation gives way 
to impervious surfaces. The rise in flooded areas 
(also about 1000 ha) could also affect carbon 
dynamics, as wetlands can either store carbon or 
release methane, depending on the type of 
flooding and vegetation. The small reduction in 
bare ground (-4.64 ha) and minimal changes in 
agricultural land and water bodies are unlikely 
to significantly impact carbon storage. Overall, 
these shifts highlight the complex relationships 
between land use changes and carbon balance.  
The modelling results revealed the spatial and 
temporal dynamics of carbon storage and 

sequestration in the Marowijne district from 
2017 to 2034 (Figures 13 and 14).  
In 2017, areas with high carbon storage (1.8–
2.23 MgC/pixel) made up around 40–50% of the 
district, while those with moderate storage 
(1.35-1.79 MgC/pixel) covered about 30–40%. 
Low-storage areas were relatively rare. By 2024, 
the high-carbon storage areas had decreased to 
roughly 30-35%, and the moderate storage areas 
expanded to 40-50%. At the same time, low-
carbon storage areas (0.46-0.89 MgC/pixel) will 
began to spread, covering around 15-20% of the 
district. Looking ahead to 2034, the high-carbon 
storage areas are expected to shrink further to 
20-25%, while both low and moderate storage 
areas will likely cover about 25-30% and 50-
55%, respectively. 
Between 2017 and 2024, reductions in carbon 
storage affected about 20-25% of the district, 
primarily in coastal zones and areas around 
Albina and Moengo. Increases in carbon storage 
were limited to less than 5%, reflecting localized 
improvements likely due to afforestation. 
During the subsequent decade (2024–2034), 
reductions in carbon storage are expected to 
intensify and spread to broader areas, 
particularly in central and coastal zones, 
affecting 15-20% of the district and focusing on 
already degraded areas. Only a few areas (under 
3%) are projected to exhibit increases, further 
highlighting a net decline in carbon 
sequestration potential within the limits of the 
study area. 

 

 

 
 

Figure 13. Dynamic of carbon storage and sequestration in Marowijne district  
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Figure 14. Change areas of carbon storage and sequestration in Marowijne district 

 
Coastal and settlement areas, such as Albina and 
Moengo, are expected to experience the most 
significant losses in carbon storage, with 
reductions impacting 30–35% of the district by 
2034. The net loss of high-carbon areas (~15–
25%) between 2017 and 2034 reflects 
intensifying anthropogenic pressures and 
underscores the urgent need for effective land-
use management strategies. 
 
CONCLUSIONS 
 
The transformation of land use and land cover 
(LULC) in the Marowijne district of Suriname 
from 2024 to 2034 was simulated using four 
hybrid predictive models: Markov chain 
analysis with cellular automata (CA-MC), 
multilayer perceptron (MLP-MC), support 
vector machines (SVM-MC), and logistic 
regression (LR-MC). This research utilized a 
combination of dependent (driver) and 
independent spatial datasets, analyzed through 
both statistical and graphical methods. Eight 
biophysical, socioeconomic, and proximity 
variables were identified as the primary drivers 
of LULC change. Based on the land use change 
analysis and the most significant gains and 

losses for each land use class, seven sub-
transition models were developed. Among 
these, the urban-expansion model was selected 
as the most appropriate for inclusion in the final 
predictive model. 
Accuracy assessments revealed that the SVM-
based model, which incorporated the UEX 
transition sub-model for transitions such as the 
conversion of forest-covered areas, flooded 
areas, bare ground, and rangeland to built-up 
areas, achieved an overall accuracy of 97.14%. 
While previous studies indicated higher 
accuracy for MLP models, the SVM model 
proved superior in this study due to its 
robustness with small datasets and its ability to 
effectively handle high-dimensional data. The 
reliability of the SVM model was further 
confirmed by a Kappa statistic of 98.47% for 
predictions in 2024. 
Using the business-as-usual scenario, future 
LULC changes for 2034 were forecasted. The 
model predicts a slight increase in forest-
covered areas, a significant reduction in 
rangelands, expansion of built-up areas, and an 
increase in flooded areas. These trends 
underscore the intricate interplay between 
human activities and environmental factors, 
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highlighting the urgent need for sustainable land 
management practices. 
The expected decline in carbon storage suggests 
a decrease in carbon sequestration, which could 
have negative effects on both climate regulation 
and the overall stability of ecosystems. To 
counteract this loss, it's crucial to implement 
strategies like reforestation and more stringent 
land-use policies. 
Given the unique characteristics of different 
resorts in Marowijne, future research should aim 
to create more specific predictive models that 
take into account the particular driving factors of 
each separate resort. This would improve the 
accuracy of LULC predictions and support more 
focused, effective land management practices. 
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