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Abstract  
 
Leonardo Fibonacci (c. 1170 - c. 1240-1250), an Italian mathematician often regarded as the most gifted European 
mathematician of the Middle Ages, played a crucial role in introducing the Hindu–Arabic numeral system to Europe. His 
seminal work, Liber Abaci (1202), not only promoted this numerical framework but also featured the now-famous 
Fibonacci sequence - an integer series with deep mathematical properties and widespread applications. This paper 
explores the mathematical foundations of the Fibonacci sequence, including its recurrence relations, algebraic and 
matrix representations, and connections to continuous fractions. Furthermore, it examines the relationship between the 
sequence and the golden ratio (φ), an irrational number often referred to as the "divine proportion". The golden ratio is 
linked to aesthetically pleasing proportions and appears in various domains such as art, architecture, music, biology, 
and cosmology. Through historical analysis and illustrative examples, this work highlights the enduring influence of 
Fibonacci’s legacy and the remarkable intersection between mathematical theory and patterns observed in the natural 
and cultural world. 
 
Key words: Fibonacci sequence, Fibonacci numbers, golden ratio, irrational numbers, recursive functions, mathematical 
modelling, patterns in nature, mathematical aesthetics, interdisciplinary applications. 
 

“Everything that is correct thinking is either mathematics or susceptible to mathematization” 
Grigore Moisil 

 
INTRODUCTION  
 
Mathematics, logic, philosophy, astronomy, and 
cosmology form the foundation of many of the 
principles, calculations, and models used in 
contemporary science and daily life. These 
disciplines have shaped humanity’s 
understanding of the world and continue to 
provide tools for discovery and innovation. 
Among the great contributors to mathematical 
thought, names such as Pythagoras, 
Archimedes, Euler, and Fibonacci stand out. 
Their works laid the groundwork for theories 
and methods that remain relevant today. One 
particularly influential figure is Leonardo 
Fibonacci (c. 1170 - c. 1240-1250), also known 
as Leonardo of Pisa, a mathematician widely 
regarded as the most talented of the Western 
Middle Ages. 
Fibonacci was the son of Guglielmo, an Italian 
merchant and customs official stationed in 
Bugia (modern-day Béjaïa, Algeria). 
Accompanying his father on commercial 
journeys throughout the Mediterranean, 

Fibonacci was exposed to diverse mathematical 
practices. It was in Bugia that he encountered the 
Hindu-Arabic numeral system - a revolutionary 
system far superior to the Roman numerals then 
used in Europe. 
The name "Fibonacci" is derived from the Latin 
filius Bonacci, meaning “son of Bonacci”. The 
word "Bonacci" likely comes from the Latin 
bonus, meaning “good,” suggesting “fortunate  
son”. This name would eventually become 
synonymous with one of the most elegant 
numerical sequences in mathematics. 
This paper provides an overview of Fibonacci’s 
mathematical legacy, focusing on his 
introduction of the Hindu–Arabic numeral 
system to Europe and the presentation of the 
Fibonacci sequence in his seminal work Liber 
Abaci. It also explores the mathematical 
properties of this sequence and its connection to 
the golden ratio - a number that has fascinated 
mathematicians, artists, and scientists for 
centuries due to its unique properties and 
surprising appearances in both natural and 
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human-made structures (Livio, 2003; Wang & 
Johnson, 2008; Choi et al., 2023). 
 
FIBONACCI’S MATHEMATICAL 
HERITAGE  
 
A pivotal milestone in Fibonacci’s mathematical 
legacy was his role in introducing and 
promoting the Hindu–Arabic numeral system in 
Europe. This achievement was primarily 
realized through the publication of his 
influential work, Liber Abaci (The Book of 
Calculation), in the early 13th century (Beebe, 
2009). 
It is important to emphasize that Fibonacci’s 
contributions were made in an era without 
modern computational tools such as calculators 
or computers. The introduction of an efficient 
numerical system was therefore revolutionary, 
facilitating arithmetic operations that were 
previously cumbersome under the Roman 
numeral system. 
Among the many examples in Liber Abaci, 
Fibonacci included a now-famous problem 
involving the growth of a rabbit population. This 
example led to the popularization of the integer 
sequence that would later bear his name—the 
Fibonacci sequence. Although Fibonacci did not 
invent the sequence, his use of it in this context 
significantly contributed to its recognition and 
enduring legacy in mathematical literature. 
 
Liber Abacci 
Fibonacci employed a unique fractional notation 
in Liber Abaci, using composite fractions in 
which a sequence of numerators and 
denominators was written beneath a single 
fraction bar. A notable example is found in a 
manuscript preserved at the National Central 
Library, where Fibonacci lists the numbers 1, 2, 
3, 5, 8, 13, 21, 34, 55, 89, 144, 233, and 377—
forming the well-known Fibonacci sequence 
(Boyer, 1968).  
This page, shown in Figure 1, also illustrates 
how certain digits - particularly 2, 8, and 9 - bear 
a stronger resemblance to modern Arabic 
numerals than to their Eastern Arabic or Indian 
counterparts. While these early numbers are 
simple to compute or recall, the Fibonacci 
sequence extends far beyond its initial terms, 
revealing complex and profound mathematical 
properties (Sigler, 2002). 

Liber Abaci - Latin for “The Book of 
Calculation” - was published in 1202 and 
remains one of the most influential arithmetic 
texts of the medieval period (Devlin, 2012). 
Although the original edition no longer survives, 
a revised version was completed in 1227 and 
dedicated to the scholar Michael Scot. At least 
nineteen manuscripts containing portions of this 
work still exist, including three complete 
versions from the 13th and 14th centuries and 
nine known incomplete copies dating from the 
13th to 15th centuries (Mollin, 2002). 
 

 
Figure 1. A page from Liber Abaci, displaying early use 

of the Fibonacci sequence and Arabic numeral forms 
(Pisano & Bussotti, 2015) 

 
The first printed edition of Liber Abaci appeared 
in 1857, translated into Italian by Boncompagni. 
A complete English translation did not appear 
until the early 21st century, highlighting the 
enduring interest in Fibonacci’s contributions. 
This work is particularly renowned for 
introducing the base-10 positional system and 
Arabic numeral symbols to Europe, replacing 
the cumbersome Roman system. Fibonacci 
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emphasized the practical superiority of this 
approach throughout the text. 
Beyond arithmetic, Liber Abaci demonstrated 
the widespread presence of Fibonacci numbers 
in nature. These numbers appear in spiraling 
arrangements of plant growth, such as sunflower 
seed patterns, pinecones, and other botanical 
structures. Similar spirals are observed in non-
living systems such as hurricanes, water 
vortices, and galaxies. Additionally, biological 
structures like snail shells, nautilus spirals, the 
cochlea of the inner ear, and even goat horns 
often follow logarithmic spiral patterns aligned 
with the Fibonacci sequence. 
Significantly, Liber Abaci was the first Western 
book to introduce and promote the Hindu–
Arabic numeral system, including symbols 
resembling modern digits. The work made a 
compelling case for adopting this new system, 
explaining its advantages for both theoretical 
and practical calculations. 
Although the title is sometimes mistranslated as 
The Book of the Abacus, Sigler (2002) clarifies 
that the term abacus during Fibonacci’s time 
referred to “calculation” in general, not 
specifically to the counting device. In fact, in 
medieval Italy, the spelling abbacus (with two 
"b"s) denoted computations using Hindu–
Arabic numerals, thus avoiding confusion. 
Liber Abaci outlined techniques for performing 
arithmetic without relying on the traditional 
abacus. Ore (1948) noted a long-standing rivalry 
that persisted after the book’s publication—
between algorists, who promoted the new 
numerical system, and abacists, who remained 
loyal to the Roman numeral-based counting 
board. 
Mathematics historian Carl Boyer emphasized 
that Liber Abaci, while not a treatise on the 
abacus itself, is “a very thorough treatise on 
algebraic methods and problems in which the 
use of the Hindu–Arabic numerals is strongly 
advocated” (Boyer, 1968). 
The book is organized into four main sections: 

- Section I introduces the Hindu–Arabic 
numeral system, arithmetic operations, and 
methods for converting between numerical 
representations. It also includes the earliest 
known use of trial division for identifying and 
factoring composite numbers. 

- Section II applies arithmetic to 
commercial problems, including currency 

conversion, measurements, and interest 
calculations. 

- Section III explores more advanced 
mathematical topics, such as the Chinese 
Remainder Theorem, perfect numbers, 
Mersenne primes, arithmetic series, and square 
pyramidal numbers. This section also presents 
the famous rabbit problem, which popularized 
the Fibonacci sequence. 

- Section IV discusses numerical and 
geometric approximations of irrational numbers, 
such as square roots. 
Notably, Liber Abaci contains several Euclidean 
geometric proofs, revealing Fibonacci’s 
familiarity with classical Greek mathematics. 
Furthermore, his algebraic problem-solving 
methods suggest influence from earlier scholars 
such as the 10th-century Egyptian 
mathematician Abū Kāmil Shujāʿ ibn Aslam 
(Mollin, 2002). 
 
Fibonacci's notation for fractions (Moyon et 
al., 2015) 
In reading Liber Abaci, it is essential to 
understand Fibonacci’s unique notation for 
rational numbers. His system represents a 
transitional form between ancient Egyptian 
fractions - commonly used up to that time - and 
the modern fractional notation still in use today. 
Fibonacci’s approach differs from contemporary 
notation in several keyways: 

1. Order of mixed numbers: modern 
notation typically places the fractional part to 
the right of the whole number (e.g., 2 1

5
 for 11

5
). 

In contrast, Fibonacci wrote the fraction first, 
followed by the whole number: for instance, he 
would write “1

5
2“ to represent 2 1

5
  

2.  Composite fractions: Fibonacci used a 
form of composite fraction notation in which a 
single fraction bar encompassed multiple 
numerators and denominators. Each term 
represented a separate fraction, where the 
numerator was divided by the product of all 
denominators to its right. For example: 

𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐

= 𝑎𝑎𝑎𝑎
𝑐𝑐𝑐𝑐

+ 𝑏𝑏𝑏𝑏
𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑

 , and  𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎
 𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑

+ 𝑏𝑏𝑏𝑏
𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒

+ 𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 . 

As a specific example, the fraction,   27
30

  could be 

represented as   1 1 4
2 3 5

,  which translates to:  
4
5

+ 1
3∙5

+ 1
2∙3∙5

. 
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This form of mixed radix notation was 
particularly useful for handling weights, 
measures, and currencies. Unlike traditional 
mixed-radix systems that often-omitted 
denominators, Fibonacci’s notation explicitly 
included them, allowing more precision and 
adaptability for various practical contexts. 

3. Additive notation: Fibonacci 
occasionally wrote multiple simple fractions 
side by side to indicate their sum. For example, 
since  1

2
+ 1

3
= 5

6
, so a notation like 1

2
 1
3

 4 would 

represent the mixed number 4 5
6
, or simply the 

ordinary fraction  29
6

.   
This form of notation can be distinguished from 
composite fractions by a visual break in the 
fraction bar. Moreover, when all numerators are 
1 and the denominators are distinct, the result 
corresponds to an Egyptian fraction - a sum of 
distinct unit fractions.  
Fibonacci sometimes combined additive and 
composite notations to represent numbers more 
flexibly. His system allowed for multiple 
representations of the same value, and Liber 
Abaci includes several methods for converting 
between these forms. 
Notably, Chapter II.7 of Liber Abaci features a 
collection of techniques for expressing improper 
fractions as sums of unit fractions. Among these 
is the greedy algorithm - a method later referred 
to as the Fibonacci–Sylvester expansion - which 
selects the largest possible unit fraction at each 
step to construct the sum (O’Connor et al., n.d.). 
 
Modus Indorum – The Method of the Indians 
In Liber Abaci, Fibonacci introduces the concept 
of the Modus Indorum - Latin for “method of the 
Indians” - which refers to what is now known as 
the Hindu–Arabic numeral system or base-10 
positional notation. This system, developed in 
India and transmitted to the Islamic world, was 
recognized by Fibonacci for its superior 
efficiency in calculation and record-keeping. 
The text includes a presentation of the nine 
Indian numerals: 1, 2, 3, 4, 5, 6, 7, 8, 9 and 
introduces the symbol 0, referred to by the Arabs 
as zephyrum (from the Arabic ṣifr), meaning 
“empty” or “zero”. Using these ten symbols, any 
number can be written through positional value 
- a concept that was revolutionary in contrast to 
the Roman numeral system then prevalent in 
Europe. 

Thus, Liber Abaci offers not only a practical 
guide to arithmetic but also a comprehensive 
introduction to the use of digits 0 through 9, 
along with the principles of place value, which 
lie at the core of modern number systems. 
Prior to the adoption of this system, Europe 
relied on Roman numerals, which lacked a 
symbol of zero and made complex arithmetic 
operations - such as multiplication, division, and 
algebraic problem-solving - extremely difficult, 
if not impossible. As a result, the methods of 
modern mathematics could not fully develop. 
Fibonacci’s endorsement of the Hindu–Arabic 
system marked a turning point in European 
mathematics. Although Liber Abaci was 
instrumental in initiating this transition, the 
widespread adoption of the system was gradual 
and extended over several centuries. As Ore 
(1948) notes, the process was “long-drawn-out”, 
and it was not until the end of the 16th century 
that the Hindu–Arabic numeral system became 
widely accepted across Europe. 
 
Some Mathematical Properties of Fibonacci 
Numbers 
The Fibonacci sequence is a sequence of natural 
numbers defined by the recurrence relation 
(Vorobiev et al., 2002): 

𝐹𝐹𝐹𝐹1 = 1,  𝐹𝐹𝐹𝐹2 = 1 

𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 𝑛 3 

The recurrence relation has a characteristic 
equation: 

𝑟𝑟𝑟𝑟2 = 𝑟𝑟𝑟𝑟 + 1 
Solving this quadratic yields the roots: 

𝑟𝑟𝑟𝑟1 =
1 + √5

2
         and     𝑟𝑟𝑟𝑟2 =

1 − √5
2

 

Remark, the first root, 

𝜑𝜑𝜑𝜑 = 𝑟𝑟𝑟𝑟1 =
1 + √5

2
 

is known as the Golden Ratio. 
Using these roots, the general term of the 
Fibonacci sequence can be expressed as: 

𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐1 �
1 + √5

2
�
𝑛𝑛𝑛𝑛

+ 𝑐𝑐𝑐𝑐2 �
1 − √5

2
�
𝑛𝑛𝑛𝑛

 

where 𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐2 𝜖𝜖𝜖𝜖 ℝ are the constants. 
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Applying the initial conditions 

𝐹𝐹𝐹𝐹1 = 1, 𝐹𝐹𝐹𝐹2 = 1, 
we find: 

 𝑐𝑐𝑐𝑐1 = 1
√5

  and  𝑐𝑐𝑐𝑐2 = − 1
√5

, 

so, the general therm of Fibonacci’s sequence is: 

𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 =
1
√5

  �
1 + √5

2
�
𝑛𝑛𝑛𝑛

−
1
√5

�
1 − √5

2
�
𝑛𝑛𝑛𝑛

 

 
Matrix form 
The Fibonacci sequence can also be expressed 
in matrix form: 

�𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛
� = �1 1

0 1� �
𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛

� 

If we denote: 

𝐴𝐴𝐴𝐴 = �1 1
1 0�, 

we obtain  

�𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛
� = 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 �𝐹𝐹𝐹𝐹2𝐹𝐹𝐹𝐹1

� ,𝑛𝑛𝑛𝑛 𝑛 1. 

then: 

𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 = �𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛

� 

 
Continuous fractions 
The golden ratio can be represented as an 
infinite continued fraction: 

𝜑𝜑𝜑𝜑 = 1 +
1
𝜑𝜑𝜑𝜑

= ⋯ 

        = 1 +
1

1 + 1
1+ 1

1+⋯

 

Selected identities and properties 
1. Relation between φ and Fibonacci numbers: 

𝜑𝜑𝜑𝜑𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝜑𝜑𝜑𝜑 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 𝑛 1 
Proof: by induction. 
For n = 2 the equality becomes: 

𝜑𝜑𝜑𝜑2 = 𝐹𝐹𝐹𝐹2𝜑𝜑𝜑𝜑 + 𝐹𝐹𝐹𝐹1 ⇔ 𝜑𝜑𝜑𝜑2 = 𝜑𝜑𝜑𝜑 + 1 (true). 

𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛 + 1 

𝜑𝜑𝜑𝜑𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝜑𝜑𝜑𝜑 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛| ∙ 𝜑𝜑𝜑𝜑 𝜑 

𝜑𝜑𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝜑𝜑𝜑𝜑2 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝜑𝜑𝜑𝜑 = 

𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛(𝜑𝜑𝜑𝜑 + 1) + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝜑𝜑𝜑𝜑 = (𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛)𝜑𝜑𝜑𝜑 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛
= 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝜑𝜑𝜑𝜑 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 

Inductive step follows by multiplying both sides 
by φ and simplifying. 
2. Cassini’s identity: 

𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛2 = (−1)𝑛𝑛𝑛𝑛 
Proof. We consider m = 1 in the equality from 
below. A more elegant proof is via matrices. 
We consider the matrix 𝐴𝐴𝐴𝐴 = �1 1

1 0� which 
characterizes Fibonacci’s sequence and 
knowing det𝐴𝐴𝐴𝐴 = − 1 we obtain this identity. 

𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 = �𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛

� 

3. Catalan’s Identity (Generalization of 
Cassini’s): 

𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛2 = (−1)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚2 

Proof. By induction, we leave this to the reader. 
4. Addition identity: 

𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

Proof. By induction on m,  
Example cases: 

• m = 2  

𝐹𝐹𝐹𝐹2𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹1𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 ⇔ 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 
(true) 

• m = 3  

𝐹𝐹𝐹𝐹3𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹2𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 = 2𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 +
𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 (true) 

𝑚𝑚𝑚𝑚 𝑚 1,𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 + 1 
Adding the relations: 

𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and  𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 +
𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

we obtain: 
(𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚)𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + (𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚)𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛

= 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
which gives: 

𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
5. Sum identity: 

�𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘 = 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 − 1
𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘𝑘𝑘

 

Proof. By induction.  
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For n = 1 the equality becomes 𝐹𝐹𝐹𝐹1 = 𝐹𝐹𝐹𝐹2 = 1 
(true). 
𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛 + 1 

�𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘 =
𝑛𝑛𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘𝑘𝑘

�𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘𝑘𝑘

𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 − 1

= 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 − 1 

6. Pythagorean identity: 
Every second term in the Fibonacci sequence 
starting from F5 forms the hypotenuse of a right 
triangle: 

(𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛)2 + (2𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛)2 = 𝐹𝐹𝐹𝐹2𝑛𝑛𝑛𝑛𝑛𝑛2  

Proof left to the reader. 
7. Odd-Index Sum Identity: 

�𝐹𝐹𝐹𝐹2𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐹𝐹𝐹𝐹2𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘𝑘𝑘

 

Proof. By induction. For n=1 the equality 
becomes 𝐹𝐹𝐹𝐹1 = 𝐹𝐹𝐹𝐹2 = 1 (true). 
𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛 + 1 

�𝐹𝐹𝐹𝐹2𝑘𝑘𝑘𝑘𝑘𝑘 =
𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘𝑘𝑘

�𝐹𝐹𝐹𝐹2𝑘𝑘𝑘𝑘𝑘𝑘 + 𝐹𝐹𝐹𝐹2𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘𝑘𝑘

𝐹𝐹𝐹𝐹2𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹2𝑛𝑛𝑛𝑛𝑛𝑛

= 𝐹𝐹𝐹𝐹2𝑛𝑛𝑛𝑛𝑛𝑛 
8.  

�𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘2 = 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘𝑘𝑘

 

Proof. By induction. For n = 1 the equality 
becomes 𝐹𝐹𝐹𝐹12 = 𝐹𝐹𝐹𝐹1𝐹𝐹𝐹𝐹2 = 1 (true). 
𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛 + 1 

�𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘2 =
𝑛𝑛𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘𝑘𝑘

�𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘2 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛2 =
𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘𝑘𝑘

𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛2

= 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛) = 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 
 
EXAMPLES OF THE GOLDEN RATIO IN 
ARTS AND NATURE  
 
Golden ratio 
The golden ratio is a special irrational number, 
denoted by φ, and is defined by the division of 
a line into two parts (Figure 2), a and b, such 
that: 

𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

=
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏
𝑎𝑎𝑎𝑎

 

 
Figure 2. Golden Ratio  

 
Golden Rectangle 
A Golden Rectangle is a rectangle whose side 
lengths are in the golden ratio (Figure 3). That 
is, the ratio of the longer side to the shorter side 
equals 𝜑𝜑𝜑𝜑. 
This geometric figure is known for its aesthetic 
harmony and has been widely used in art, 
design, and architecture since antiquity. 
 

 
Figure 3. Golden Rectangle  

 
Golden angle 
In geometry, the golden angle arises when a 
circle is divided according to the golden ratio 
(Figure 4). Specifically, it is the smaller of the 
two angles formed when the circumference is 
split such that the ratio of the arc lengths is the 
golden ratio. 
Its exact value is: 

360𝑜𝑜𝑜𝑜 �1 −
1
𝜑𝜑𝜑𝜑
� = �3 − √5�180𝑜𝑜𝑜𝑜 ≈ 137,5𝑜𝑜𝑜𝑜 

= 2𝜋𝜋𝜋𝜋𝜋3 − √5� 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 
 

 
Figure 4. Golden Angle  



1134

Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering. Vol. XIV, 2025
Print ISSN 2285-6064, CD-ROM ISSN 2285-6072, Online ISSN 2393-5138, ISSN-L 2285-6064

 
Golden spiral 
A golden spiral is a type of logarithmic spiral 
whose growth factor is equal to the golden ratio 
φ. Golden spirals are self-similar, meaning their 
shape remains unchanged under magnification 
(Figure 5). 
The polar equation of a golden spiral is: 

𝑟𝑟𝑟𝑟 = 𝜑𝜑𝜑𝜑
2𝜃𝜃𝜃𝜃
𝜋𝜋𝜋𝜋  

where: 
• r is the radius; 
• θ is the angle in radians; 
• φ is the golden ratio. 

More generally, a logarithmic spiral with growth 
factor B can be written as: 

𝑟𝑟𝑟𝑟 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
which can be rewritten: 

𝜃𝜃𝜃𝜃 =
1
𝐵𝐵𝐵𝐵

log �
𝑟𝑟𝑟𝑟
𝐴𝐴𝐴𝐴
� 

 

 
Figure 5. Golden Spiral  

(https://en.wikipedia.org/wiki/Golden_spiral) 
 
GOLDEN RATIO IN ARTS 
 
Painting 
The golden ratio has played a notable role in the 
composition of some of the most iconic works 
of art throughout history. Its presence is believed 
to enhance visual harmony, balance, and 
aesthetic appeal, contributing to the emotional 
and perceptual impact of a painting. Several 
masterpieces are often cited for their use of this 
proportion, including: "The Last Supper" and 
"The Mona Lisa" by Leonardo da Vinci (Figure 
6), “The creation of Adam” by Michelangelo, 

"The Birth of Venus" by Botticelli, "The Starry 
Night" by Van Gogh, "The Persistence of 
Memory" by Salvador Dali. In these works, the 
golden ratio is thought to have guided the spatial 
arrangement of subjects and background 
elements, producing a visual equilibrium that 
resonates with the human sense of proportion 
and beauty. Artists throughout centuries have 
adopted the golden ratio, whether consciously or 
intuitively, as a compositional tool to create 
visual narratives that are pleasing and 
memorable. Alongside perspective, symmetry, 
and contrast, it remains one of the key elements 
used to achieve artistic coherence. 

 

 
Figure 6. Mona Lisa - a painting frequently associated 

with golden ratio-based composition 
(https://www.bing.com/images/) 

 
Architecture 
The golden ratio is also prevalent in architecture, 
appearing in both ancient monuments and 
contemporary structures. Long before 
Fibonacci’s time, this proportion was intuitively 
employed in designs that were considered 
naturally harmonious and aesthetically pleasing. 
Examples of structures often associated with the 
golden ratio include: The "Pantheon" in Rome 
(Figure 7), The "Great Pyramids" of Giza 
(Figure 8).  
Architects and builders may have used the 
golden ratio not just for its beauty but also for 
structural balance and proportion. In modern 
times, it continues to inform architectural design 
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in buildings, bridges, and even furniture, 
reflecting humanity’s enduring appreciation for 
mathematical harmony in physical space. 
 

 
Figure 7. Pantheon - a classical Roman example often 

associated with golden proportions 
(https://www.bing.com/images/) 

 

 
Figure 8. Pyramids - widely analyzed for golden ratio 

correlations in their dimensions 
(https://www.bing.com/images/) 

 
Music 
The golden ratio has also been observed in the 
structure and timing of musical compositions. 
Renowned composers such as Wolfgang 
Amadeus Mozart, Ludwig van Beethoven, and 
Claude Debussy are believed to have employed 
this proportion - either deliberately or intuitively 
- to shape the form and flow of their works.  
For example, in Beethoven’s Fifth Symphony, 
researchers have found structural divisions that 
align closely with the golden ratio, particularly 
in the placement of key climactic moments and 
thematic transitions (Figure 9).  
Additionally, the golden ratio has been linked to 
the design of Stradivarius violins (Figure 10). 
Studies suggest that certain dimensional 
proportions in these famous instruments reflect 
golden ratio principles, potentially contributing 
to their visual elegance and acoustic excellence. 

 
Figure 9. Beethoven’s Fifth Symphony - noted for 

structural divisions consistent with the golden 
(https://www.bing.com/images/) 

 

 
Figure 10. Stradivarius violine - exhibits golden 

proportions in design (https://www.bing.com/images/) 
 

GOLDEN RATIO IN NATURE 
 
Sunflower seeds 
In sunflowers, the seeds located at the center are 
arranged in spiral patterns that follow Fibonacci 
numbers (Figure 11). These patterns allow for 
optimal packing and efficient use of space, 
maximizing the number of seeds that can fit in 
each area. 
 
Pinecones  
Pinecones frequently exhibit spirals in 
Fibonacci-related pairs, such as 3 and 5, 5 and 8, 
or 8 and 13. This form of natural arrangement is 
part of a broader phenomenon called phyllotaxis 
- the spiral pattern by which leaves, or other 
botanical elements are organized around a stem 
(Figure 12). Similar spiraling patterns are found 
in the outer petals of artichokes, succulents, and 
various flower buds. 
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Figure 11. Sunflowers seeds - arranged in spirals that 

correspond to Fibonacci numbers 
(https://www.mathnasium.com/blog/golden-ratio-in-

nature\)  
 

 
Figure 12. Pinecone with 8/13 configuration 

(https://craftofcoding.wordpress.com/2022/05/11/fibonac
ci-and-pinecones/)  

 
Plant leaves 
The golden ratio also manifests in the 
arrangement and structure of plant leaves. To 
maximize exposure to sunlight, many plants 
grow their leaves in spiral patterns, minimizing 
the shadow cast on lower leaves. This spiral 
spacing often aligns with the golden angle, 
which helps to optimize photosynthetic 
efficiency (Figure 13).  
 

  
Figure 13. Leaves arrangement - successive leaves are 

separated by the golden angle 
(https://www.projectrhea.org/rhea/index.php/MA279Fall

2018Topic1_Leaves)  
 
Additionally, internal leaf structures show 
golden proportions. For instance, the vein 
spacing in some species approximates the 

golden ratio, and leaves of the Ginkgo tree often 
grow with dimensions reflecting this proportion 
(Figure 14). 
 

 
Figure 14. Venation of a leaf - illustrating golden ratio 

spacing 
(https://www.projectrhea.org/rhea/index.php/MA279Fall

2018Topic1_Leaves) 
 
Nautilus Shells 
Nautilus shells are often cited as natural 
illustrations of the golden spiral, a logarithmic 
spiral whose growth factor is the golden ratio. 
As the shell grows, it maintains a consistent 
spiral shape, exemplifying self-similarity - a key 
characteristic of golden spirals (Figure 15). 
 

 
Figure 15. Nautilus shells - a classic example of the 

golden spiral in nature 
(https://www.mathnasium.com/blog/golden-ratio-in-

nature\)  
 

DNA 
The golden ratio appears even at the molecular 
level. In the structure of DNA, relationships 
between its geometric features - including the 
length of a full turn of the helix and the width of 
the molecule - are often approximated by the 
golden ratio (Figure 16), suggesting an 
underlying harmony in the genetic blueprint of 
life. 
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Figure 16. DNA - illustrating proportions that reflect the 

golden ratio 
(https://www.goldennumber.net/dna/) 

 
Fibonacci numbers in tornados, vortices or 
galaxies? 
While many spiral shapes in nature arise from 
purely physical, non-biological processes - such 
as whirlpools, vortices in bodies of water, or the 
swirling formations of hurricane clouds and 
clear lanes - these spirals do not consistently 
follow Fibonacci-like patterns in their 
mathematical structure over time (Figure 17). 
It may be possible to capture a snapshot where 
certain features temporarily exhibit ratios 
resembling those found in the Fibonacci 
sequence, but these patterns are neither 
sustained nor inherent to the structures 
themselves. In fact, the Fibonacci-like spirals 
observed in galaxies are more a result of human 
perception than a fundamental truth of the 
universe! 
 

 
Figure 17. Hurricane and spiral galaxy – natural forms 
that appear Fibonacci-like, though not mathematically 

exact 
(https://www.bing.com/images/) 

 

CONCLUSIONS 
 
The Fibonacci sequence and the associated 
golden ratio have long captivated 
mathematicians, scientists, and artists alike due 
to their mathematical elegance and their 
intriguing appearance in a wide range of natural 
and human-made phenomena. 
While their mathematical foundations are firmly 
rooted in number theory and recurrence 
relations, their significance extends well beyond 
abstract theory. In fields such as biology, art, 
architecture, and music, these concepts often 
appear - sometimes as a matter of natural 
optimization, sometimes as a tool for achieving 
aesthetic harmony. 
In nature, the Fibonacci sequence is often 
observed in plant growth patterns, leaf 
arrangements, pinecones, and flower petals, 
where the underlying spiral forms offer practical 
advantages such as sunlight exposure and space 
efficiency. The golden spiral appears in natural 
objects like nautilus shells and hurricanes, 
though its presence in large-scale phenomena 
like galaxies is often more interpretive than 
mathematically precise. 
In art and architecture, the golden ratio has been 
consciously applied to design works that are 
balanced and pleasing to the eye, from 
Renaissance masterpieces to ancient monuments 
and modern constructions. Similarly, in music, 
some compositions reveal structural proportions 
aligning with the golden ratio, contributing to 
their rhythmic and thematic cohesion. 
However, it is important to distinguish between 
intentional use and retrospective attribution. The 
golden ratio and Fibonacci numbers do not 
universally govern natural or artistic forms, and 
their presence is not always exact. In many 
cases, their appearance is approximate or 
coincidental and should be appreciated as part of 
a broader interplay between mathematics and 
the natural world - not as a universal design 
code. 
In conclusion, the enduring fascination with 
Fibonacci numbers and the golden ratio lies in 
their ability to bridge pure mathematics with 
observable reality. Whether in a sunflower, a 
symphony, or a spiral staircase, they offer a 
compelling reminder of mathematical patterns 
that often underline beauty, function, and 
structure in both nature and human creativity. 



1138

Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering. Vol. XIV, 2025
Print ISSN 2285-6064, CD-ROM ISSN 2285-6072, Online ISSN 2393-5138, ISSN-L 2285-6064

 
REFERENCES  
 
Beebe, N. H. F. (2009, December 13). Fibonacci’s Liber 

Abaci (Book of Calculation). University of Utah. 
Retrieved February 27, 2025, from 
https://www.math.utah.edu/pub/tex/bib/fibonacci.htm
l 

Boyer, C. B. (1968). A history of mathematics. John Wiley 
& Sons. pp. 280  

Choi, J., Atena, A., and Tekalign, W. (2023). The Most 
Irrational Number that Shows up Ev-erywhere: The 
Golden Ratio. Journal of Applied Mathematics and 
Physics, 11, 1185–1193. 
https://doi.org/10.4236/jamp.2023.114077 

Devlin, K. (2012). The man of numbers: Fibonacci’s 
arithmetic revolution. Walker Books. ISBN 978-
0802779083. 

Devlin, K. (2019). Finding Fibonacci: The quest to 
rediscover the forgotten mathematical genius who 
changed the world. Princeton University Press. pp. 
92–93 (quoted on), ISBN 9780691192307, OCLC 
975288613. 

Livio, M. (2003). The Golden Ratio: The Story of Phi, The 
World’s Most Astonishing Number, Broadway Books: 
New York, NY, USA.  

Mollin, R. A. (2002). A brief history of factoring and 
primality testing B.C. (before computers). 
Mathematics Magazine, 75(1), 18–29. 
https://doi.org/10.2307/3219180 

Moyon, M., & Spiesser, M. (2015). L’arithmétique des 
fractions dans l’œuvre de Fibonacci: Fondements & 
usages. Archive for History of Exact Sciences, 69(4), 
391–427. https://doi.org/10.1007/s00407-015-0155-y 

Nițu, C.-C. (2022). P-adic numbers and applications in 
and outside mathematics – An overview. Scientific 
Papers. Series E. Land Reclamation, Earth 

Observation & Surveying, Environmental 
Engineering, XI, 505–510. 

O’Connor, J. J., & Robertson, E. F. (n.d.). Abu Ja’far 
Muhammad ibn Musa Al-Khwarizmi. MacTutor 
History of Mathematics Archive. University of St 
Andrews. Retrieved from http://www-history.mcs.st-
andrews.ac.uk/Biographies/Al-Khwarizmi.html 

Ore, Ø. (1948). Number theory and its history. McGraw 
Hill. (Reprinted by Dover Publications, 1988). ISBN 
978-0-486-65620-5 

Pisano, R., & Bussotti, P. (2015). Fibonacci and the 
abacus schools in Italy. Almagest: International 
Journal for the History of Scientific Ideas, 6(2), 126–
164. https://doi.org/10.1484/J.ALMAGEST.5.109664 

Rotman, A.-L. (2015). Global warming between reality, 
approach and acceptance. Scientific Papers. Series E. 
Land Reclamation, Earth Observation & Surveying, 
Environmental Engineering, IV, 19–24. 

Sigler, L. E. (Trans.). (2002). Fibonacci’s Liber Abaci: A 
translation into modern English of Leonardo Pisano’s 
Book of Calculation. Springer-Verlag, ISBN 0-387-
95419-8  

Vorobiev, N. N., & Martin, M. (2002). Fibonacci 
numbers. Birkhäuser, ISBN 978-3-7643-6135-8 

Wang, Q. & Johnson, C. R. (2008). Golden ratio in solid 
state structures, Proceedings of the National Academy 
of Sciences, 105, 39, 15098–15103, National 
Academy of Science.s  

https://www.mathnasium.com/blog/golden-ratio-in-
nature  

https://en.wikipedia.org/wiki/Golden_spiral  
https://www.projectrhea.org/rhea/index.php/MA279Fall2

018Topic1_Leaves  
https://www.goldennumber.net/dna/  
https://craftofcoding.wordpress.com/2022/05/11/fibonac

ci-and-pinecones/  
 

 
 
 




