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Abstract  
  
This study presents a predictive data acquisition system that integrates the Arduino Leonardo development platform with 
the Python programming language for automated environmental monitoring. The system employs a suite of sensors - 
DHT22 for temperature and humidity, BMP180 for atmospheric pressure, and MQ-7 for gas concentration - to collect 
real-time data. These measurements are transmitted to a Python-based processing environment, where time-series 
forecasting algorithms, including ARIMA, are applied to analyze trends and predict environmental variations. The system 
offers a cost-effective and adaptable solution for air quality assessment, meteorological research, and environmental data 
analysis, facilitating timely interventions and enhanced resource management. 
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INTRODUCTION 
 
The automated acquisition of data from sensors 
deployed in remote or challenging environments 
is essential for ensuring accuracy and efficiency 
in environmental monitoring. Automation 
reduces human error, improves data reliability, 
and streamlines the information-gathering 
process - especially in conditions where manual 
data collection is impractical. 
Data acquisition systems (DAQ) play a crucial 
role in scientific research and engineering, 
providing solutions for testing, automation, and 
advanced analysis. These systems utilize various 
sensors and transducers to convert physical 
phenomena into measurable signals. Core 
functions of a DAQ system include signal 
conditioning, analog-to-digital conversion, and 
data processing, all of which contribute to a 
comprehensive understanding of environmental 
variables and support evidence-based decision-
making (Maurizio, 2013).  
Two critical components in the data acquisition 
process are data analysis and prediction. Data 
analysis enables the identification of patterns, 
correlations, and statistical relationships within 
collected datasets, forming the basis for reliable 
interpretation and trend recognition. Techniques 
such as descriptive statistics, correlation 
analysis, and probability distributions are applied 
to extract actionable insights.  

Prediction, in contrast, focuses on estimating 
future values based on historical data. This is 
achieved through statistical and machine 
learning methods, which are used to construct 
models capable of anticipating environmental 
changes. These predictive techniques are 
instrumental in transforming raw data into 
practical forecasting tools.  
Machine learning algorithms form a critical 
component of this predictive framework. They 
can be broadly categorized as follows: 
- Regression – for forecasting continuous 

variables such as temperature or pressure. 
- Classification – for categorizing environ-

mental conditions (clear, cloudy, rainy). 
- Unsupervised Learning – utilized to identify 

patterns and relationships in data without 
predefined labels. 

- Semi-Supervised Learning – combining 
labeled and unlabeled data for improved 
prediction accuracy. 

Recent advances in machine learning have 
significantly enhanced environmental monito-
ring by enabling automated analysis of complex 
datasets. In addition to machine learning, 
statistical methods are essential for predictive 
modeling, offering a solid theoretical basis for 
analyzing data relationships. Key statistical 
approaches include: 
- Regression Analysis – used to estimate the 
relationships between variables, enabling the 
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prediction of one variable based on the behavior 
of others. 
- Time Series Analysis – focuses on detecting 
patterns within temporally ordered data, making 
it especially effective for identifying trends and 
forecasting future values. 
- Bayesian Methods – utilize probabilistic 
reasoning and prior knowledge to update 
predictions as new data becomes available, 
allowing for dynamic and adaptive forecasting 
(Siahaan et al., 2023). 
Given the wide range of signals and parameters 
that can be sampled and stored, DAQ involves 
numerous techniques and skills. A DAQ system 
consists of various components, including 
sensors, communication links, signal processors, 
computers, databases, and data acquisition 
software. These components must function 
cohesively to ensure the system's reliability and 
effectiveness (Potter et al., 2012; Singh et al., 
2009; Fisher et al., 2012; Sarma et al., 2018). 
This study presents the design and evaluation of 
a predictive DAQ system built on the Arduino 
Leonardo platform and integrated with Python. 
The system incorporates key environmental 
sensors and leverages statistical forecasting 
methods to facilitate real-time environmental 
monitoring and predictive analytics. Applica-
tions include air quality assessment, meteoro-
logical research, and smart environmental 
management systems. 
 
MATERIALS AND METHODS  
 
Hardware component 
Arduino is a popular open-source platform for 
rapid prototyping and data acquisition. This 
study uses the Arduino Leonardo, featuring the 
ATmega32u4 microcontroller with built-in USB 
communication for efficient data transfer 
(Arduino Leonardo, 2025; Monk, 2022). 
 

 
Figure 1. Arduino Leonardo development platform 

(Arduino Leonardo, 2025) 

The Arduino Leonardo board includes 19 digital 
and 12 analog input/output ports, facilitating 
compatibility with a wide array of sensors and 
external modules. This versatility makes it parti-
cularly well-suited for customizable applica-
tions, such as predictive environmental 
monitoring. 
The board operates at a nominal voltage of 5V, 
with each I/O pin capable of sourcing or sinking 
up to 40 mA of current. It features an internal 
pull-up resistor (disabled by default), which 
provides enhanced control during circuit design. 
Additionally, it includes 32KB of flash memory, 
2.5KB of SRAM, and runs at a clock speed of 16 
MHz. 
In the developed system, the ATmega32u4 
microcontroller functions as the central unit, 
responsible for sensor data acquisition and 
transmission. Its ability to handle multiple I/O 
operations and communicate via USB makes it 
an ideal solution for integration with the Python-
based processing environment. 
 
Sensor specifications 
The proposed system integrates three types of 
sensors to monitor key environmental parameters 
– temperature and humidity, atmospheric 
pressure, and gas concentration. 
The DHT22 sensor (Figure 2, Table 1) provides 
accurate digital measurements of temperature 
and relative humidity. It employs proprietary 
signal acquisition and humidity sensing 
technology, ensuring both high precision and 
long-term operational stability. The sensor 
outputs data into a calibrated digital format, 
simplifying its integration with microcontroller-
based systems. 
 

 
Figure 2. DHT22 sensor module used for temperature and 

humidity measurement (DHT22, 2025) 
 
The BMP180 sensor (Figure 3, Table 1) adds 
atmospheric pressure monitoring capability to 
the data acquisition system. It combines a high-
resolution barometric pressure sensor with a 
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temperature sensor, making it suitable for 
weather-related applications.  
As the successor to BMP085, the BMP180 is 
optimized for accuracy and energy efficiency, 
and is commonly used in consumer-grade 
environmental monitoring devices. 
 

 
Figure 3. BMP180 sensor module used for atmospheric 

pressure measurement (BMP180, 2025) 

The MQ-7 sensor (Figure 4, Table 1) is 
employed for detecting gas concentrations, 
particularly carbon monoxide (CO) and 
hydrogen (H₂). It plays a critical role in 
evaluating air quality, contributing valuable data 
to the system’s predictive analytics. However, it 
is sensitive to environmental noise and requires a 
preheating phase to stabilize reading. 
 

 
Figure 4. MQ-7 sensor module used  

for gas concentration monitoring (MQ7, 2025) 
 

Table 1. Technical characteristics of sensors 
Sensor DHT22 BMP180 MQ7 

Measured parameters Temperature, humidity Atmospheric pressure Gas concentra- 
tion (CO, H2) 

Accuracy ±0.50°C  
±2% RH  ±0.12 hPa Varies by gas  

Communication interface Digital (single wire) I2C Analog via ADC 
Operating voltage 3.3-6V 1.62-3.6V 5V 

Additional notes Calibrated output, 2s reading interval Include EEPROM for calibration; 
temperature compensation 

Requires preheating; sensitive to 
environmenttal noise 

 
Software tools and programming 
The Arduino Leonardo microcontroller is 
programmed using the Arduino language via the 
Arduino Integrated Development Environment 
(IDE). This platform allows for the development 
of custom scripts to control sensor operations, 
manage collected data, and transmit information 
to a Python-based environment for further 
analysis. 
Python serves as the core platform for data 
processing in this study, selected for its 
readability, versatility, and robust ecosystem of 
libraries. Its object-oriented structure and 
extensive community support make it well-suited 
for implementing complex data analysis and 
predictive modeling tasks (Fuentes, 2018). 
 
Data processing and prediction pipeline 
Figure 5 illustrates the end-to-end data 
processing workflow of the developed system. 
Environmental data from DHT22, BMP180, and 
MQ-7 sensors is first displayed on the Arduino 
IDE Serial Monitor. Using Python’s serial 
communication libraries, the data is captured and 
organized into a Pandas DataFrame for efficient 
handling. The processed data is then exported to 
Excel for storage and traceability. 

 
Figure 5. Data processing flow for DAQ system 

 
For predictive analysis, the system applies an 
ARIMA (AutoRegressive Integrated Moving 
Average) model to the time-series data, enabling 
the forecasting of future environmental 
conditions. Results are visualized through 
Python-based plotting libraries, providing 
insights into data trends and supporting real-
time, informed decision-making. 
 
RESULTS AND DISCUSSIONS  
 
System implementations  
The proposed system utilizes the Arduino 
Leonardo platform (Figure 6) to acquire data 
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from three environmental sensors: the BMP180 
(atmospheric pressure), the DHT22 (temperature 
and humidity), and the MQ-2 (gas concen-
tration). Sensor readings are initially displayed 
on the Arduino IDE Serial Monitor, enabling 
real-time data visualization. 
 

 
Figure 6. System implementation using Arduino  

and environmental sensors 
 
Data Collection and Visualization 
Sensor data is retrieved via Python using serial 
communication, structured into data frames, and 
stored in Excel files for traceability and further 
analysis. Figures 7 to 10 present graphical 
outputs generated using the Arduino Plotter, 
providing a visual overview of temperature, 
humidity, gas levels, and atmospheric pressure as 
measured in real time. 
This data forms the basis for analyzing 
environmental conditions and identifying trends 
over time - supporting applications in air quality 
monitoring, precision agriculture, and 
meteorological research. 
 

 
Figure 7. Temperature readings from DHT22 

in Arduino Plotter 
 

 
Figure 8. Humidity readings from DHT22  

in Arduino Plotter 

 
Figure 9. Gas concentration readings  

from MQ-7 in Arduino Plotter 
 

 
Figure 10. Atmospheric pressure readings  

from BMP180 in Arduino Plotter 
 
Python’s extensive ecosystem enhances the 
system’s data processing and modeling 
capabilities. Key libraries include: 
- Pandas – efficient for managing tabular data, 
offering tools for filtering, aggregation, and 
transformation. 
- Matplotlib and Seaborn – visualization 
libraries that support the creation of insightful 
and interpretable charts. 
- Scikit-learn – a machine learning toolkit 
providing access to models such as linear 
regression, decision trees, and more. 
These tools collectively empower the system to 
bridge environmental sensing and predictive 
analytics. To support this, two Python programs 
were developed - one for data acquisition and 
formatting, and another for predictive modeling - 
each playing a vital role in the end-to-end 
analysis pipeline. 
 
Predictive Modeling with ARIMA 
To enable predictive analysis, two Python pro-
grams were developed - each with a distinct role 
in the data acquisition and forecasting pipeline. 
In the first program, Python libraries such as 
serial and pandas were employed to manage 
communication between the Arduino and the 
host computer. The serial library facilitated data 
extraction from the Arduino sensors, while 
pandas enabled efficient organization, manipu-
lation, and export of the data to Excel format. 
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This framework ensured clean, structured 
datasets for further processing. 
The second program focused on time-series 
forecasting using the ARIMA (AutoRegressive 
Integrated Moving Average) model.  
Libraries used included pandas for data handling, 
statsmodels.tsa.ARIMA.model for implementing 
the ARIMA algorithm, matplotlib.pyplot for vi-
sualization, and NumPy for numerical operations.  
ARIMA, a well-established statistical technique, 
leverages past observations to model and predict 
future values in a time series - an approach parti-
cularly useful in environmental monitoring. An 
ARIMA model is defined by three parameters: 
• p: the autoregressive order (number of 

lagged observations), 
• d: the degree of difference (used to make the 

data stationary), 
• q: the moving average order (size of the error 

window used for smoothing). 
Fine-tuning these parameters allows for the 
creation of an optimized forecasting model 
tailored to the nature of the dataset (Wicaksana et 
al., 2022; Herrera-Gonzalez et al., 2024; 
Ganghetty et al., 2021; Spyrou et al., 2022; 
Kulkarni, et al., 2023). 
ARIMA models can be adapted into simpler 
forms - such as AR (AutoRegressive), MA 

(Moving Average), or ARMA - by setting one or 
more parameters to zero. While ARIMA assumes 
that past values influence future trends, it is 
important to recognize its limitations, parti-
cularly in cases where external, non-recurring 
factors influence environmental conditions 
(Tibshirani, 2023). To assess the model’s 
predictive accuracy, we evaluated three 
commonly used performance metrics: 
- RMSE (Root Mean Square Error) 
- MAE (Mean Absolute Error) 
- MAPE (Mean Absolute Percentage Error) 
For example, in forecasting humidity using the 
ARIMA(5,1,0) configuration, the results showed 
a marked improvement when data was sampled 
more frequently: 
- Case 1 (one reading/day): RMSE = 1.34, 
MAE = 1.09, MAPE = 2.06% 
- Case 2 (three readings/day): RMSE = 
0.92, MAE = 0.71, MAPE = 1.28% 
These results demonstrate that increasing the 
sampling frequency significantly enhances 
forecasting accuracy. The findings underscore 
the importance of data resolution in predictive 
modeling, particularly in dynamic environmental 
contexts. 

 
Table 2. Values for the once-per-day reading frequency 

Day DHT22H (%) DHT22T (°C) MQ-7 (ppm) BMP180 (hPa) 
1 59.5 9.4 21 987.41 
2 49.6 7.9 0 989.76 
3 48.5 9.8 0 988.34 
4 52.3 10.1 0 987.98 
5 54.3 10.4 3 988.85 
6 50.4 10.6 0 987.43 
7 52.8 11.2 0 989.32 
8 51.5 11.3 0 988.32 
9 49.7 11.8 2 988.54 

10 53.7 11.9 0 989.53 
11 52.4 11.4 0 987.98 
12 51.8 12.1 0 988.93 
13 50.4 12.3 0 987.78 
14 53.2 12.4 0 985.32 

Comparative Analysis - Case 1 
Table 2 presents the sensor data collected with a 
sampling frequency of one reading per day.  
Notably, the MQ-7 sensor - designed to detect 
flammable gases such as carbon monoxide (CO) 
and hydrogen (H₂) - is also sensitive to other 

environmental variables. This high sensitivity 
may result in considerable fluctuations in the 
recorded values, as observed in the dataset. 
These unexpected variations in reading highlight 
the need for careful analysis and interpretation to 
accurately assess the system’s performance and 
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the environmental conditions affecting the MQ-7 
sensor. The corresponding analysis results are 
illustrated in Figures 11 to 14. 
Eight ARIMA model configurations were tested 
by varying the parameters p and d, as shown in 
Table 3. Among these, the model with parameters 
ARIMA (scaled_data, order = (5,1,0)) yielded 
the best results, producing predicted values that 
closely matched the actual sensor readings 
presented in Table 2. 
 

Figure 11. The graph and humidity prediction  
using DHT22 

 

 
Figure 12. The graph and temperature prediction 

using DHT22 

 
Figure 13. The graph and atmospheric  

pressure prediction using BMP180 
 

 
Figure 14. The graph and gas level prediction in the 

atmosphere using MQ-7 
 
The comparative analysis indicates that the MQ-
7 sensor is highly sensitive to environmental 
changes. This is reflected in its output, which 
often fluctuates from baseline values (typically 
zero) to peaks between 2 and 21 ppm in the 
measured data (Table 2), and from 0.13 to 6.96 
ppm in the predicted data (Table 3). Such 
sensitivity underscores the need for precise 
calibration and controlled measurement 
conditions to ensure reliable predictions. 

 
Table 3. Testing the ARIMA model for data acquisition once a day for 7 days 

Cases Sensor Day 
1 2 3 4 5 6 7 

(3,2,0) 

DHT22H 52.05 51.16 51.66 51.69 51.60 51.39 52.13 
DHT22T 12.63 13.07 13.05 13.42 13.66 13.86 14.07 
BMP180 985.01 982.01 980.93 979.33 975.95 975.59 972.25 

MQ7 0 0 0 0 0 0 0 

(4,2,0) 

DHT22H 52.79 51.30 51.85 53.09 52.55 51.79 52.50 
DHT22T 12.46 12.94 12.98 13.17 13.42 13.65 13.77 
BMP180 985.35 982.15 981.29 980.06 977.22 977.26 974.51 

MQ7 0.73 1.74 3 3.97 4.96 5.83 6.96 

(5,2,0) 

DHT22H 52.24 52.29 51.22 52.66 52.24 52.71 51.68 
DHT22T 12.48 12.77 12.88 13.17 13.23 13.47 13.64 
BMP180 985.32 982.15 981.18 979.83 976.83 976.66 973.76 

MQ7 0.21 0.71 1.35 1.98 2.53 3.06 3.69 

(6,2,0) 

DHT22H 52.29 52.03 52.19 51.64 52.36 52.87 52.79 
DHT22T 12.49 12.59 12.69 12.79 12.89 12.99 13.09 
BMP180 982.86 980.40 977.94 975.48 973.02 970.56 968.10 

MQ7 0.003 0.006 0.008 0.011 0.014 0.017 0.020 
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(3,1,0) 

DHT22H 52.15 51.01 51.68 52.85 51.57 51.24 52.29 
DHT22T 12.72 12.69 12.86 12.90 12.93 13.01 13.00 
BMP180 987.11 984.43 984.66 985.06 982.86 984.43 983.14 

MQ7 0 0 0 0 0 0 0 

(4,1,0) 

DHT22H 52.82 50.69 51.71 52.99 52.04 51.10 52.11 
DHT22T 12.53 12.95 12.87 13.12 13.27 13.40 13.46 
BMP180 986.33 984.02 984.58 985.28 984.01 986.12 985.18 

MQ7 0 0 0 0 0 0 0 

(5,1,0) 

DHT22H 51.92 52.26 51.06 52.30 51.84 52.73 51.17 
DHT22T 12.40 12.86 12.87 12.99 13.17 13.35 13.40 
BMP180 986.15 983.98 984.49 985.10 983.77 985.60 984.54 

MQ7 0.40 0.66 0.80 0.65 0.62 0.61 0.73 

(6,1,0) 

DHT22H 51.49 52.33 52.02 51.33 51.44 52.03 52.30 
DHT22T 12.44 12.72 12.80 13.06 13.08 13.28 13.40 
BMP180 986.16 984.121 984.54 985.17 983.90 985.75 984.89 

MQ7 0 0.13 0.27 0.41 0.30 0.30 0.26 

Comparative Analysis - Case 2 
Table 4 shows sensor data collected at a higher 
frequency - three readings per day. Compared to 

Case 1, the values display greater variability, 
especially for the MQ-7 sensor. 

 
Table 4. Data acquisition with a reading frequency of three times a day 

Day DHT22H (%) DHT22T (°C) MQ-7 (ppm) BMP180 (hPa) 

1 
59.5 9.3 18 987.43 
65.5 8.6 3 987.47 
48.9 8 0 989.75 

2 
49.5 7.9 0 988.67 
54.9 6.2 0 989.95 
51.4 7.5 0 989.89 

3 
49.7 9.8 0 988.54 
53.5 9.9 0 988.12 
54.6 10 2 989.68 

4 
57.2 10.1 1 989.26 
54.3 10.3 0 987.93 
59 10.5 0 988.77 

5 
50.1 10.4 0 989.11 
59.1 10.5 2 987.85 
52.7 10.6 0 988.29 

6 
56.1 10.8 0 987.77 
55.7 10.9 0 989.39 
58.1 11 0 989.02 

7 
49.4 11.1 0 989.53 
52.4 11.2 0 988.64 
59.5 11.3 0 987.7 

8 
52.9 11.5 2 987.42 
57.5 11.4 3 988.86 
50.9 11.5 0 987.67 

9 
58.4 11.6 0 988.06 
52.3 11.7 0 989.82 
50.8 11.8 0 989.7 

10 
59.4 11.9 0 989.16 
56.7 12 0 989.84 
53.7 12.1 0 987.54 

11 
51.9 12.2 1 989.35 
50.3 12.3 0 987.64 
52.2 12.4 0 989.57 

12 
59.4 12.5 0 988.49 
51.4 12.6 0 987.98 
54 12.7 3 988.43 

13 
49.9 12.8 0 989.88 
59.2 12.9 0 988.74 
55.3 13 0 989.04 

14 
58.8 13.1 0 988.21 
54.7 13.2 0 989.24 
56.3 13.3 0 988.45 
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Predicted trends for humidity, temperature, gas 
concentration, and pressure are shown in Figures 
15 to 18, demonstrating improved accuracy with 
increased sampling. 
The most accurate results were obtained using 
the ARIMA model with the configuration 
ARIMA(scaled_data, order = (4,2,0)), based on 
multiple test iterations. 
The outcomes of these tests are summarized in 
Table 5. 
The results shown in Figures 11–14 and Tables 
2-3 correspond to Case 1 (one reading per day), 
while Figures 15-18 and Tables 4-5 represent 
Case 2 (three readings per day). 

 

 
Figure 15. The graph and humidity  

prediction using DHT22 

 
Figure 16. The graph and temperature  

using DHT22 
 

 
Figure 17. The graph and atmospheric  

pressure prediction using BMP180 
 

 
Figure 18. The graph and gas level prediction 

in the atmosphere using MQ-7 
 

Table 5. Testing the Arima model for data acquisition three times a day 

Cases Days DHT22H DHT22 T BMP 180 MQ7 

(3,2,0) 

1 52.05 12.63 985.01 0 
2 51.16 13.07 982.01 0 
3 51.66 13.05 980.93 0 
4 51.69 13.42 979.33 0 
5 51.60 13.66 975.95 0 
6 51.39 13.86 975.59 0 
7 52.13 14.07 972.25 0 

(4,2,0) 

1 52.79 12.46 985.35 0.73 
2 51.30 12.94 982.15 1.74 
3 51.85 12.98 981.29 3 
4 53.09 13.17 980.06 3.97 
5 52.55 13.42 977.22 4.96 
6 51.79 13.65 977.26 5.83 
7 52.50 13.77 974.51 6.96 

(5,2,0) 

1 52.24 12.48 985.32 0.21 
2 52.29 12.77 982.15 0.71 
3 51.22 12.88 981.18 1.35 
4 52.66 13.17 979.83 1.98 
5 52.24 13.23 976.83 2.53 
6 52.71 13.47 976.66 3.06 
7 51.68 13.64 973.76 3.69 

(6,2,0) 

1 52.29 12.49 982.86 0.003 
2 52.03 12.59 980.40 0.006 
3 52.19 12.69 977.94 0.008 
4 51.64 12.79 975.48 0.011 
5 52.36 12.89 973.02 0.014 
6 52.87 12.99 970.56 0.017 
7 52.79 13.09 968.10 0.020 
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(3,1,0) 

1 52.15 12.72 987.11 0 
2 51.01 12.69 984.43 0 
3 51.68 12.86 984.66 0 
4 52.85 12.90 985.06 0 
5 51.57 12.93 982.86 0 
6 51.24 13.01 984.43 0 
7 52.29 13.00 983.14 0 

(4,1,0) 

1 52.82 12.53 986.33 0 
2 50.69 12.95 984.02 0 
3 51.71 12.87 984.58 0 
4 52.99 13.12 985.28 0 
5 52.04 13.27 984.01 0 
6 51.10 13.40 986.12 0 
7 52.11 13.46 985.18 0 

(5,1,0) 

1 51.92 12.40 986.15 0.40 
2 52.26 12.86 983.98 0.66 
3 51.06 12.87 984.49 0.80 
4 52.30 12.99 985.10 0.65 
5 51.84 13.17 983.77 0.62 
6 52.73 13.35 985.60 0.61 
7 51.17 13.40 984.54 0.73 

(6,1,0) 

1 51.49 12.44 986.16 0 
2 52.33 12.72 984.121 0.13 
3 52.02 12.80 984.54 0.27 
4 51.33 13.06 985.17 0.41 
5 51.44 13.08 983.90 0.30 
6 52.03 13.28 985.75 0.30 
7 52.30 13.40 984.89 0.26 

To illustrate why Case 2 yields better perfor-
mance, we compare measured and predicted 
values for each sensor. 
For the DHT22H sensor (humidity): 
• Case 1: Measured values ranged from 48.5% 
to 59.5% (Table 2), with predicted values between 
51.06% and 52.73% (Figure 11, Table 3). 
• Case 2: Measured values ranged from 48.9% 
to 65.5% (Table 4), while predictions ranged 
from 56.06% to 57.54% (Figure 15, Table 5). 
In both cases, predictions tend to cluster around 
the mean, underestimating peak values. 
However, Case 2 shows better alignment with the 
actual trend, thanks to the increased sampling 
frequency. 
Table 6 summarizes the average measured and 
predicted humidity values for both cases. 
For the DHT22T sensor (air temperature): 
• In Case 1, measured values ranged from 
7.9°C to 12.4°C (Table 2), while predicted values 
ranged from 12.4°C to 13.4°C (Figure 12, Table 3). 
• In Case 2, measured temperatures varied 
from 6.2°C to 13.3°C (Table 4), with predictions 
between 13.4°C and 14.0°C (Figure 16, Table 5). 
In both cases, the predicted values exceed the 
actual measurements, indicating a consistent 
overestimation. This effect is more pronounced 
in Case 1, where predictions are centered around 

a higher average. While Case 2 shows improved 
responsiveness due to more frequent sampling, 
the predicted values still reflect a bias toward 
higher temperatures. The maximum measured 
temperature in Case 2 was 13.3°C, compared to 
a predicted peak of 14.0°C.  
Table 7 provides a comparison of average 
measured and predicted temperature values for 
both cases. 
For the MQ-7 sensor (gas concentration): 
• In Case 1, measured values ranged from 0 to 
21 ppm (Table 2), while predicted values 
remained between 0.4 and 0.8 ppm (Figure 13, 
Table 3). 
• In Case 2, measured values ranged from 0 to 
18 ppm (Table 4), whereas predicted values 
remained fixed at 0 ppm (Figure 17, Table 5). 
In Case 1, although the predicted values 
generally follow the average trend, they fail to 
capture peak variations, indicating a degree of 
underfitting. In Case 2, despite the increased 
sampling frequency, the model consistently 
predicts 0 ppm, failing to reflect actual 
fluctuations. This persistent underestimation 
may result from sensor calibration issues or 
excessive environmental noise sensitivity. 
Table 8 compares the average measured and 
predicted gas concentrations for both cases. 
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Table 6. Comparison of results for DHT22H sensor (air humidity) 

Cases Measured value Predicted value 
Min max average min max average 

1 48.5 59.5 52.15 51 52.7 51.89 
2 48.9 65.5 54.69 56 57.5 56.62 

 
Table 7. Comparison of results For DHT22T sensor (air temperature) 

Cases Measured value Predicted value 
Min max average min max average 

Case 1 7.9 12.4 10.9 12.4 13.4 13 
Case 2 6.2 13.3 11.05 13.4 14 13.7 

 
Table 8. Comparison of results for MQ-7 sensor (gas level in the atmosphere) 

Cases Measured value Predicted value 
Min max average min max average 

Case 1 0 21 1.87 0.4 0.8 0.63 
Case 2 0 18 0.83 0 0 0 

 
For the BMP180 sensor (atmospheric pressure): 
• In Case 1, measured values ranged from 
985.32 to 989.76 hPa (Table 2), while predicted 
values ranged from 983.77 to 986.15 hPa (Figure 
14, Table 3). 
• In Case 2, measured values ranged from 
987.42 to 989.95 hPa (Table 4), with predicted 
values between 988.22 and 988.62 hPa (Figure 
18, Table 5). 
In Case 1, predicted values were relatively close 
to actual measurements but tended to 
underestimate the pressure, clustering around a 
lower average. In Case 2, with more frequent 
sampling, the predicted values showed improved 

alignment, though the model still slightly 
underpredicted the peak pressure (988.62 hPa vs. 
the actual 989.95 hPa). 
A comparison of prediction performance between 
the two sampling intervals reveals notable 
improvements: 
• Humidity (DHT22): RMSE reduced by ~23% 
• Pressure (BMP180): RMSE reduced by ~19% 
These reductions highlight the benefits of 
increased measurement frequency for enhancing 
prediction accuracy.  
Table 9 summarizes the average measured and 
predicted pressure values for both cases. 

 
Table 9. Comparison of results for BMP180 sensor (atmospheric pressure) 

Cases Measured value Predicted value 
Min max average min max average 

1 985.32 989.76 988.24 983.77 986.15 984.80 
2 987.42 989.96 988.71 988.22 988.62 988.38 

CONCLUSIONS  
 
The proposed system successfully achieved its 
primary objective: developing an integrated, 
low-cost solution for environmental data 
acquisition and predictive analysis with a 
satisfactory level of accuracy. Among the 
ARIMA configurations tested, the 
ARIMA(5,1,0) model yielded the most reliable 
results, particularly in forecasting humidity and 
temperature trends. 
Regarding sensor performance, the DHT22 
sensor demonstrated high reliability for both 
temperature and humidity measurements, while 
the BMP180 sensor provided consistent and 
accurate atmospheric pressure readings. 

Conversely, the MQ-7 gas sensor exhibited 
considerable variability, which negatively 
impacted the accuracy of gas concentration 
predictions. In both sampling scenarios, 
predicted gas values were either consistently zero 
or significantly underestimated, suggesting 
potential issues related to sensor calibration or 
sensitivity to environmental noise. 
Despite this limitation, the system establishes a 
solid foundation for real-time environmental 
monitoring and predictive analytics. Future 
improvements should focus on refining gas 
sensor calibration and enhancing the robustness 
of predictive models for volatile environmental 
parameters. 
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