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Abstract

This study presents a predictive data acquisition system that integrates the Arduino Leonardo development platform with
the Python programming language for automated environmental monitoring. The system employs a suite of sensors -
DHT?22 for temperature and humidity, BMP180 for atmospheric pressure, and MQ-7 for gas concentration - to collect
real-time data. These measurements are transmitted to a Python-based processing environment, where time-series
forecasting algorithms, including ARIMA, are applied to analyze trends and predict environmental variations. The system
offers a cost-effective and adaptable solution for air quality assessment, meteorological research, and environmental data

analysis, facilitating timely interventions and enhanced resource management.
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INTRODUCTION

The automated acquisition of data from sensors
deployed in remote or challenging environments
is essential for ensuring accuracy and efficiency
in environmental monitoring. Automation
reduces human error, improves data reliability,
and streamlines the information-gathering
process - especially in conditions where manual
data collection is impractical.

Data acquisition systems (DAQ) play a crucial
role in scientific research and engineering,
providing solutions for testing, automation, and
advanced analysis. These systems utilize various
sensors and transducers to convert physical
phenomena into measurable signals. Core
functions of a DAQ system include signal
conditioning, analog-to-digital conversion, and
data processing, all of which contribute to a
comprehensive understanding of environmental
variables and support evidence-based decision-
making (Maurizio, 2013).

Two critical components in the data acquisition
process are data analysis and prediction. Data
analysis enables the identification of patterns,
correlations, and statistical relationships within
collected datasets, forming the basis for reliable
interpretation and trend recognition. Techniques
such as descriptive statistics, correlation
analysis, and probability distributions are applied
to extract actionable insights.

Prediction, in contrast, focuses on estimating
future values based on historical data. This is
achieved through statistical and machine
learning methods, which are used to construct
models capable of anticipating environmental
changes. These predictive techniques are
instrumental in transforming raw data into
practical forecasting tools.

Machine learning algorithms form a critical
component of this predictive framework. They
can be broadly categorized as follows:

- Regression — for forecasting continuous
variables such as temperature or pressure.
- Classification — for categorizing environ-

mental conditions (clear, cloudy, rainy).

- Unsupervised Learning — utilized to identify
patterns and relationships in data without
predefined labels.

- Semi-Supervised Learning — combining
labeled and unlabeled data for improved
prediction accuracy.

Recent advances in machine learning have
significantly enhanced environmental monito-
ring by enabling automated analysis of complex
datasets. In addition to machine learning,
statistical methods are essential for predictive
modeling, offering a solid theoretical basis for
analyzing data relationships. Key statistical
approaches include:

- Regression Analysis — used to estimate the

relationships between variables, enabling the
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prediction of one variable based on the behavior
of others.

- Time Series Analysis — focuses on detecting
patterns within temporally ordered data, making
it especially effective for identifying trends and
forecasting future values.

- Bayesian Methods — utilize probabilistic
reasoning and prior knowledge to update
predictions as new data becomes available,
allowing for dynamic and adaptive forecasting
(Siahaan et al., 2023).

Given the wide range of signals and parameters
that can be sampled and stored, DAQ involves
numerous techniques and skills. A DAQ system
consists of various components, including
sensors, communication links, signal processors,
computers, databases, and data acquisition
software. These components must function
cohesively to ensure the system's reliability and
effectiveness (Potter et al., 2012; Singh et al.,
2009; Fisher et al., 2012; Sarma et al., 2018).
This study presents the design and evaluation of
a predictive DAQ system built on the Arduino
Leonardo platform and integrated with Python.
The system incorporates key environmental
sensors and leverages statistical forecasting
methods to facilitate real-time environmental
monitoring and predictive analytics. Applica-
tions include air quality assessment, meteoro-
logical research, and smart environmental
management systems.

MATERIALS AND METHODS

Hardware component

Arduino is a popular open-source platform for
rapid prototyping and data acquisition. This
study uses the Arduino Leonardo, featuring the
ATmega32u4 microcontroller with built-in USB
communication for efficient data transfer
(Arduino Leonardo, 2025; Monk, 2022).

(Arduino Leonardo, 2025)

The Arduino Leonardo board includes 19 digital
and 12 analog input/output ports, facilitating
compatibility with a wide array of sensors and
external modules. This versatility makes it parti-
cularly well-suited for customizable applica-
tions, such as predictive environmental
monitoring.

The board operates at a nominal voltage of 5V,
with each I/O pin capable of sourcing or sinking
up to 40 mA of current. It features an internal
pull-up resistor (disabled by default), which
provides enhanced control during circuit design.
Additionally, it includes 32KB of flash memory,
2.5KB of SRAM, and runs at a clock speed of 16
MHz.

In the developed system, the ATmega32u4
microcontroller functions as the central unit,
responsible for sensor data acquisition and
transmission. Its ability to handle multiple I/O
operations and communicate via USB makes it
an ideal solution for integration with the Python-
based processing environment.

Sensor specifications

The proposed system integrates three types of
sensors to monitor key environmental parameters
— temperature and humidity, atmospheric
pressure, and gas concentration.

The DHT22 sensor (Figure 2, Table 1) provides
accurate digital measurements of temperature
and relative humidity. It employs proprietary
signal acquisition and humidity sensing
technology, ensuring both high precision and
long-term operational stability. The sensor
outputs data into a calibrated digital format,
simplifying its integration with microcontroller-
based systems.

DHT22 Pimout
Pim 1: WOC (3V te 5.5V)
Pim 2: Data
Pin 3: Not Connected
Pin 4: Ground

Figure 2. DHT22 sensor module used for temperature and
humidity measurement (DHT22, 2025)

The BMP180 sensor (Figure 3, Table 1) adds
atmospheric pressure monitoring capability to
the data acquisition system. It combines a high-
resolution barometric pressure sensor with a
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temperature sensor, making it suitable for
weather-related applications.

As the successor to BMP085, the BMP180 is
optimized for accuracy and energy efficiency,
and is commonly used in consumer-grade
environmental monitoring devices.

Not Used
3.3V to 5V
Ground
SCL

SDA

Figure 3. BMP180 sensor module used for atmospheric
pressure measurement (BMP180, 2025)

The MQ-7 sensor (Figure 4, Table 1) is
employed for detecting gas concentrations,
particularly carbon monoxide (CO) and
hydrogen (H:). It plays a critical role in
evaluating air quality, contributing valuable data
to the system’s predictive analytics. However, it
is sensitive to environmental noise and requires a
preheating phase to stabilize reading.

-

2>,
Figure 4. MQ-7 sensor module used
for gas concentration monitoring (MQ?7, 2025)

Table 1. Technical characteristics of sensors

Sensor DHT22 BMP180 MQ7
L . Gas concentra-
Measured parameters Temperature, humidity Atmospheric pressure tion (CO. Ha)
+0.50°C .
Accuracy 429 RH +0.12 hPa Varies by gas
Communication interface Digital (single wire) 12C Analog via ADC
Operating voltage 3.3-6V 1.62-3.6V 5V
Additional notes Calibrated output, 2s reading interval Include EEPROM for callb}"atlon; Requires preheatmg; sensitive to
temperature compensation environmenttal noise

Software tools and programming

The Arduino Leonardo microcontroller is
programmed using the Arduino language via the
Arduino Integrated Development Environment
(IDE). This platform allows for the development
of custom scripts to control sensor operations,
manage collected data, and transmit information
to a Python-based environment for further
analysis.

Python serves as the core platform for data
processing in this study, selected for its
readability, versatility, and robust ecosystem of
libraries. Its object-oriented structure and
extensive community support make it well-suited
for implementing complex data analysis and
predictive modeling tasks (Fuentes, 2018).

Data processing and prediction pipeline

Figure 5 illustrates the end-to-end data
processing workflow of the developed system.
Environmental data from DHT22, BMP180, and
MQ-7 sensors is first displayed on the Arduino
IDE Serial Monitor. Using Python’s serial
communication libraries, the data is captured and
organized into a Pandas DataFrame for efficient
handling. The processed data is then exported to
Excel for storage and traceability.

Sensor

Arduino IDE
Serial Monitor

Python Serial
Communication

Pandas DataFrame
ARIMA Model

Figure 5. Data processing flow for DAQ system

For predictive analysis, the system applies an
ARIMA (AutoRegressive Integrated Moving
Average) model to the time-series data, enabling
the forecasting of future environmental
conditions. Results are visualized through
Python-based plotting libraries, providing
insights into data trends and supporting real-
time, informed decision-making.

RESULTS AND DISCUSSIONS
System implementations

The proposed system utilizes the Arduino
Leonardo platform (Figure 6) to acquire data
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from three environmental sensors: the BMP180
(atmospheric pressure), the DHT22 (temperature
and humidity), and the MQ-2 (gas concen-
tration). Sensor readings are initially displayed
on the Arduino IDE Serial Monitor, enabling
real-time data visualization.

Figure 6. System implementation using Arduino
and environmental sensors

Data Collection and Visualization

Sensor data is retrieved via Python using serial
communication, structured into data frames, and
stored in Excel files for traceability and further
analysis. Figures 7 to 10 present graphical
outputs generated using the Arduino Plotter,
providing a visual overview of temperature,
humidity, gas levels, and atmospheric pressure as
measured in real time.

This data forms the basis for analyzing
environmental conditions and identifying trends
over time - supporting applications in air quality
monitoring,  precision  agriculture,  and
meteorological research.

2985
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Figure 7. Temperature readings from DHT22
in Arduino Plotter
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Figure 8. Humidity readings from DHT22
in Arduino Plotter

0 3 6 9 12

Figure 9. Gas concentration readings
from MQ-7 in Arduino Plotter
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Figure 10. Atmospheric pressure readings
from BMP180 in Arduino Plotter

Python’s extensive ecosystem enhances the
system’s data processing and modeling
capabilities. Key libraries include:

- Pandas — efficient for managing tabular data,
offering tools for filtering, aggregation, and
transformation.

- Matplotlib and Seaborn - visualization
libraries that support the creation of insightful
and interpretable charts.

- Scikit-learn — a machine learning toolkit
providing access to models such as linear
regression, decision trees, and more.

These tools collectively empower the system to
bridge environmental sensing and predictive
analytics. To support this, two Python programs
were developed - one for data acquisition and
formatting, and another for predictive modeling -
each playing a vital role in the end-to-end
analysis pipeline.

Predictive Modeling with ARIMA

To enable predictive analysis, two Python pro-
grams were developed - each with a distinct role
in the data acquisition and forecasting pipeline.
In the first program, Python libraries such as
serial and pandas were employed to manage
communication between the Arduino and the
host computer. The serial library facilitated data
extraction from the Arduino sensors, while
pandas enabled efficient organization, manipu-
lation, and export of the data to Excel format.
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This framework ensured clean, structured
datasets for further processing.

The second program focused on time-series
forecasting using the ARIMA (AutoRegressive
Integrated Moving Average) model.

Libraries used included pandas for data handling,
statsmodels.tsa. ARIMA .model for implementing
the ARIMA algorithm, matplotlib.pyplot for vi-
sualization, and NumPy for numerical operations.
ARIMA, a well-established statistical technique,
leverages past observations to model and predict
future values in a time series - an approach parti-
cularly useful in environmental monitoring. An
ARIMA model is defined by three parameters:

* p: the autoregressive order (number of
lagged observations),

d: the degree of difference (used to make the
data stationary),

q: the moving average order (size of the error
window used for smoothing).

Fine-tuning these parameters allows for the
creation of an optimized forecasting model
tailored to the nature of the dataset (Wicaksana et
al.,, 2022; Herrera-Gonzalez et al., 2024;
Ganghetty et al., 2021; Spyrou et al., 2022;
Kulkarni, et al., 2023).

ARIMA models can be adapted into simpler
forms - such as AR (AutoRegressive), MA

(Moving Average), or ARMA - by setting one or
more parameters to zero. While ARIMA assumes
that past values influence future trends, it is
important to recognize its limitations, parti-
cularly in cases where external, non-recurring
factors influence environmental conditions
(Tibshirani, 2023). To assess the model’s
predictive accuracy, we evaluated three
commonly used performance metrics:

- RMSE (Root Mean Square Error)

- MAE (Mean Absolute Error)

- MAPE (Mean Absolute Percentage Error)
For example, in forecasting humidity using the
ARIMAC(5,1,0) configuration, the results showed
a marked improvement when data was sampled
more frequently:

Case 1 (one reading/day): RMSE = 1.34,
MAE = 1.09, MAPE = 2.06%

Case 2 (three readings/day): RMSE =
0.92, MAE =0.71, MAPE = 1.28%

These results demonstrate that increasing the
sampling frequency significantly enhances
forecasting accuracy. The findings underscore
the importance of data resolution in predictive
modeling, particularly in dynamic environmental
contexts.

Table 2. Values for the once-per-day reading frequency

Day DHT22H (%) DHT22T (°C) MQ-7 (ppm) BMP180 (hPa)
1 595 9.4 21 987.41
2 49.6 7.9 0 989.76
3 485 9.8 0 988.34
4 523 10.1 0 987.98
5 543 10.4 3 988.85
6 504 10.6 0 987.43
7 52.8 112 0 989.32
8 515 113 0 988.32
9 497 11.8 2 988.54
10 53.7 11.9 0 989.53
11 524 114 0 987.98
12 51.8 12.1 0 988.93
13 504 12.3 0 987.78
14 532 124 0 985.32

Comparative Analysis - Case 1

Table 2 presents the sensor data collected with a
sampling frequency of one reading per day.
Notably, the MQ-7 sensor - designed to detect
flammable gases such as carbon monoxide (CO)
and hydrogen (H:) - is also sensitive to other

environmental variables. This high sensitivity
may result in considerable fluctuations in the
recorded values, as observed in the dataset.

These unexpected variations in reading highlight
the need for careful analysis and interpretation to
accurately assess the system’s performance and
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the environmental conditions affecting the MQ-7
sensor. The corresponding analysis results are
illustrated in Figures 11 to 14.

Eight ARIMA model configurations were tested
by varying the parameters p and d, as shown in
Table 3. Among these, the model with parameters
ARIMA (scaled data, order = (5,1,0)) yielded
the best results, producing predicted values that
closely matched the actual sensor readings
presented in Table 2.
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Figure 13. The graph and atmospheric
pressure prediction using BMP180
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Figure 11. The graph and humidity prediction 0 ==y e e
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One reading a day
§ - Figure 14. The graph and gas level prediction in the
R atmosphere using MQ-7
o” The comparative analysis indicates that the MQ-
£ 7 sensor is highly sensitive to environmental
g changes. This is reflected in its output, which
5 often fluctuates from baseline values (typically
0 zero) to peaks between 2 and 21 ppm in the
— Current measured data (Table 2), and from 0.13 to 6.96
’ e ppm in the predicted data (Table 3). Such
0.0 25 5.0 75 10.0 125 15.0 175 20.0 o, 0 o .
One reading a day sensitivity underscores the need for precise
Figure 12. The graph and temperature prediction Cahbrajtlon and cqntrolled . measurement
using DHT22 conditions to ensure reliable predictions.
Table 3. Testing the ARIMA model for data acquisition once a day for 7 days
Day
Cases Sensor 1 2 3 4 3 3 5
DHT22H 52.05 51.16 51.66 51.69 51.60 51.39 52.13
(3.2,0) DHT22T 12.63 13.07 13.05 13.42 13.66 13.86 14.07
- BMP180 985.01 982.01 980.93 979.33 975.95 975.59 972.25
MQ7 0 0 0 0 0 0 0
DHT22H 52.79 51.30 51.85 53.09 52.55 51.79 52.50
(4.2,0) DHT22T 12.46 12.94 12.98 13.17 13.42 13.65 13.77
- BMP180 985.35 982.15 981.29 980.06 977.22 977.26 974.51
MQ7 0.73 1.74 3 3.97 4.96 5.83 6.96
DHT22H 52.24 52.29 51.22 52.66 52.24 52.71 51.68
(5.2,0) DHT22T 12.48 12.77 12.88 13.17 13.23 13.47 13.64
- BMP180 985.32 982.15 981.18 979.83 976.83 976.66 973.76
MQ7 0.21 0.71 1.35 1.98 2.53 3.06 3.69
DHT22H 52.29 52.03 52.19 51.64 52.36 52.87 52.79
(6,2,0) DHT22T 12.49 12.59 12.69 12.79 12.89 12.99 13.09
- BMP180 982.86 980.40 977.94 975.48 973.02 970.56 968.10
MQ7 0.003 0.006 0.008 0.011 0.014 0.017 0.020
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DHT22H 52.15 51.01 51.68 52.85 51.57 51.24 52.29

3.10) DHT22T 12.72 12.69 12.86 12.90 12.93 13.01 13.00

o BMP180 987.11 984.43 984.66 985.06 982.86 984.43 983.14
MQ7 0 0 0 0 0 0 0

DHT22H 52.82 50.69 51.71 52.99 52.04 51.10 52.11

@.10) DHT22T 12.53 12.95 12.87 13.12 13.27 13.40 13.46

o BMP180 986.33 984.02 984.58 985.28 984.01 986.12 985.18
MQ7 0 0 0 0 0 0 0

DHT22H 51.92 5226 51.06 5230 51.84 5273 51.17

10 DHT22T 12.40 12.86 12.87 12.99 13.17 13.35 13.40

10 BMP180 986.15 983.98 984.49 985.10 983.77 985.60 984.54
MQ7 0.40 0.66 0.80 0.65 0.62 0.61 0.73

DHT22H 51.49 5233 52.02 5133 51.44 52.03 5230

6.1.0) DHT22T 12.44 12.72 12.80 13.06 13.08 13.28 13.40

o BMP180 986.16 984.121 984.54 985.17 983.90 985.75 984.89

MQ7 0 0.13 0.27 041 0.30 0.30 0.26

Comparative Analysis - Case 2 Case 1, the values display greater variability,

Table 4 shows sensor data collected at a higher especially for the MQ-7 sensor.
frequency - three readings per day. Compared to

Table 4. Data acquisition with a reading frequency of three times a day

Day DHT22H (%) DHT22T (°C) MQ-7 (ppm) BMP180 (hPa)

59.5 93 18 987.43

1 65.5 8.6 3 987.47
48.9 8 0 989.75

495 7.9 0 988.67

2 54.9 6.2 0 989.95
514 75 0 989.89

497 98 0 988.54

3 535 9.9 0 988.12
54.6 10 2 989.68

572 10.1 1 989.26

4 543 10.3 0 987.93
59 10.5 0 988.77

50.1 10.4 0 989.11

5 59.1 10.5 2 987.85
527 10.6 0 988.29

56.1 10.8 0 987.77

6 55.7 10.9 0 989.39
58.1 11 0 989.02

494 1.1 0 989.53

7 524 11.2 0 988.64
595 113 0 987.7

52.9 115 2 987.42

8 575 114 3 988.86
50.9 115 0 987.67

584 11.6 0 988.06

9 523 11.7 0 989.82
50.8 11.8 0 989.7

594 11.9 0 989.16

10 56.7 12 0 989.84
537 12.1 0 987.54

51.9 122 1 989.35

11 50.3 123 0 987.64
522 12.4 0 989.57

594 125 0 988.49

12 514 12.6 0 987.98
54 12.7 3 988.43

499 12.8 0 989.88

13 592 12.9 0 988.74
553 13 0 989.04

58.8 13.1 0 988.21

14 54.7 132 0 989.24
56.3 133 0 988.45
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Predicted trends for humidity, temperature, gas s s
concentration, and pressure are shown in Figures
15 to 18, demonstrating improved accuracy with
increased sampling.

The most accurate results were obtained using
the ARIMA model with the configuration

Temperature (°C)

— Actual
—o— Predicted

ARIMA(scaled data, order = (4,2,0)), based on ° & Threeriag, > “ =
multiple test iterations. Figure 16. The graph and temperature
The outcomes of these tests are summarized in using DHT22

Table 5.
The results shown in Figures 11-14 and Tables

2-3 correspond to Case 1 (one reading per day),
while Figures 15-18 and Tables 4-5 represent
Case 2 (three readings per day).
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Figure 17. The graph and atmospheric
pressure prediction using BMP180
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Figure 15. The graph and humidity Figure 18. The graph and gas level prediction
prediction using DHT22 in the atmosphere using MQ-7

Table 5. Testing the Arima model for data acquisition three times a day

Cases Days DHT22H DHT22 T BMP 180 MQ7
1 52.05 12.63 985.01 0
2 51.16 13.07 982.01 0
3 51.66 13.05 980.93 0
(3,2,0) 4 51.69 13.42 979.33 0
5 51.60 13.66 975.95 0
6 51.39 13.86 975.59 0
7 52.13 14.07 972.25 0
1 52.79 12.46 985.35 0.73
2 51.30 12.94 982.15 1.74
3 51.85 12.98 981.29 3
(4,2,0) 4 53.09 13.17 980.06 3.97
5 52.55 13.42 977.22 4.96
6 51.79 13.65 977.26 5.83
7 52.50 13.77 974.51 6.96
1 52.24 12.48 985.32 0.21
2 52.29 12.77 982.15 0.71
3 51.22 12.88 981.18 1.35
(5,2,0) 4 52.66 13.17 979.83 1.98
5 52.24 13.23 976.83 2.53
6 52.71 13.47 976.66 3.06
7 51.68 13.64 973.76 3.69
1 52.29 12.49 982.86 0.003
2 52.03 12.59 980.40 0.006
3 52.19 12.69 977.94 0.008
(6,2,0) 4 51.64 12.79 975.48 0.011
5 52.36 12.89 973.02 0.014
6 52.87 12.99 970.56 0.017
7 52.79 13.09 968.10 0.020
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1 52.15 12.72 987.11 0
2 51.01 12.69 984.43 0
3 51.68 12.86 984.66 0
(3,1,0) 4 52.85 12.90 985.06 0
5 51.57 12.93 982.86 0
6 51.24 13.01 984.43 0
7 52.29 13.00 983.14 0
1 52.82 12.53 986.33 0
2 50.69 12.95 984.02 0
3 5171 12.87 984.58 0
(4,1,0) 4 52.99 13.12 985.28 0
5 52.04 13.27 984.01 0
6 51.10 13.40 986.12 0
7 52.11 13.46 985.18 0
1 51.92 12.40 986.15 0.40
2 52.26 12.86 983.98 0.66
3 51.06 12.87 984.49 0.80
(5,1,0) 4 52.30 12.99 985.10 0.65
5 51.84 13.17 983.77 0.62
6 52.73 13.35 985.60 0.61
7 5117 13.40 984.54 0.73
1 51.49 12.44 986.16 0
2 52.33 12.72 984.121 0.13
3 52.02 12.80 984.54 0.27
(6,1,0) 4 51.33 13.06 985.17 0.41
5 51.44 13.08 983.90 0.30
6 52.03 13.28 985.75 0.30
7 52.30 13.40 984.89 0.26

To illustrate why Case 2 yields better perfor-
mance, we compare measured and predicted
values for each sensor.

For the DHT22H sensor (humidity):

e Case 1: Measured values ranged from 48.5%
to 59.5% (Table 2), with predicted values between
51.06% and 52.73% (Figure 11, Table 3).

o Case 2: Measured values ranged from 48.9%
to 65.5% (Table 4), while predictions ranged
from 56.06% to 57.54% (Figure 15, Table 5).

In both cases, predictions tend to cluster around
the mean, underestimating peak values.
However, Case 2 shows better alignment with the
actual trend, thanks to the increased sampling
frequency.

Table 6 summarizes the average measured and
predicted humidity values for both cases.

For the DHT22T sensor (air temperature):

e In Case 1, measured values ranged from
7.9°C to 12.4°C (Table 2), while predicted values
ranged from 12.4°C to 13.4°C (Figure 12, Table 3).
e In Case 2, measured temperatures varied
from 6.2°C to 13.3°C (Table 4), with predictions
between 13.4°C and 14.0°C (Figure 16, Table 5).
In both cases, the predicted values exceed the
actual measurements, indicating a consistent
overestimation. This effect is more pronounced
in Case 1, where predictions are centered around

a higher average. While Case 2 shows improved
responsiveness due to more frequent sampling,
the predicted values still reflect a bias toward
higher temperatures. The maximum measured
temperature in Case 2 was 13.3°C, compared to
a predicted peak of 14.0°C.

Table 7 provides a comparison of average
measured and predicted temperature values for
both cases.

For the MQ-7 sensor (gas concentration):

e In Case 1, measured values ranged from 0 to
21 ppm (Table 2), while predicted values
remained between 0.4 and 0.8 ppm (Figure 13,
Table 3).

e In Case 2, measured values ranged from 0 to
18 ppm (Table 4), whereas predicted values
remained fixed at O ppm (Figure 17, Table 5).

In Case 1, although the predicted values
generally follow the average trend, they fail to
capture peak variations, indicating a degree of
underfitting. In Case 2, despite the increased
sampling frequency, the model consistently
predicts 0 ppm, failing to reflect actual
fluctuations. This persistent underestimation
may result from sensor calibration issues or
excessive environmental noise sensitivity.

Table 8 compares the average measured and
predicted gas concentrations for both cases.
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Table 6. Comparison of results for DHT22H sensor (air humidity)

Measured value Predicted value
Cases n :
Min max average min max average
1 48.5 59.5 52.15 51 52.7 51.89
2 48.9 65.5 54.69 56 57.5 56.62
Table 7. Comparison of results For DHT22T sensor (air temperature)
Measured value Predicted value
Cases T -
Min max average min max average
Case 1 7.9 124 10.9 124 134 13
Case 2 6.2 13.3 11.05 134 14 13.7
Table 8. Comparison of results for MQ-7 sensor (gas level in the atmosphere)
Measured value Predicted value
Cases n :
Min max average min max average
Case 1 0 21 1.87 0.4 0.8 0.63
Case 2 0 18 0.83 0 0 0

For the BMP180 sensor (atmospheric pressure):
e In Case 1, measured values ranged from
985.32 to 989.76 hPa (Table 2), while predicted
values ranged from 983.77 to 986.15 hPa (Figure
14, Table 3).

e In Case 2, measured values ranged from
987.42 to 989.95 hPa (Table 4), with predicted
values between 988.22 and 988.62 hPa (Figure
18, Table 5).

In Case 1, predicted values were relatively close
to actual measurements but tended to
underestimate the pressure, clustering around a
lower average. In Case 2, with more frequent
sampling, the predicted values showed improved

alignment, though the model still slightly
underpredicted the peak pressure (988.62 hPa vs.
the actual 989.95 hPa).

A comparison of prediction performance between
the two sampling intervals reveals notable
improvements:

o Humidity (DHT22): RMSE reduced by ~23%
o Pressure (BMP180): RMSE reduced by ~19%
These reductions highlight the benefits of
increased measurement frequency for enhancing
prediction accuracy.

Table 9 summarizes the average measured and
predicted pressure values for both cases.

Table 9. Comparison of results for BMP180 sensor (atmospheric pressure)

Measured value Predicted value
Cases - :
Min max average min max average
1 985.32 989.76 988.24 983.77 986.15 984.80
2 987.42 989.96 988.71 988.22 988.62 988.38
CONCLUSIONS Conversely, the MQ-7 gas sensor exhibited

The proposed system successfully achieved its
primary objective: developing an integrated,
low-cost solution for environmental data
acquisition and predictive analysis with a
satisfactory level of accuracy. Among the
ARIMA configurations tested, the
ARIMA(5,1,0) model yielded the most reliable
results, particularly in forecasting humidity and
temperature trends.

Regarding sensor performance, the DHT22
sensor demonstrated high reliability for both
temperature and humidity measurements, while
the BMP180 sensor provided consistent and
accurate  atmospheric  pressure  readings.

considerable variability, which negatively
impacted the accuracy of gas concentration
predictions. In both sampling scenarios,
predicted gas values were either consistently zero
or significantly underestimated, suggesting
potential issues related to sensor calibration or
sensitivity to environmental noise.

Despite this limitation, the system establishes a
solid foundation for real-time environmental
monitoring and predictive analytics. Future
improvements should focus on refining gas
sensor calibration and enhancing the robustness
of predictive models for volatile environmental
parameters.
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