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Abstract

Nitrogen dioxide is found in the atmosphere as a key ingredient in the photochemical formation of smog and acid rain,
nitrogen dioxide is a poisonous gas that is formed during combustion. Toxic at high concentrations, it reacts with
moisture in the air to form nitric acid, which is highly corrosive and dangerous to plants and animals. In this study, we
present a predictive model for nitrogen dioxide concentrations measured between 2017 and 2024 at ground level in a
national network of monitoring stations. The model is based on a statistical approach to measurements from 152
automatic measurement points, with an hourly resolution. The analysis carried out allowed the construction of a
mathematical model in order to make an effective prediction. The algorithms used were of the Recursive least squares
filter type. The application used was made possible by running a dedicated software in PyCharm. It was found that the
model for daytime concentrations depends linearly on a series of parameters monitored by the national network.

Key words: NO,, algorithm, RLS, statistical analysis.
INTRODUCTION

Nitrogen dioxide (NO2) pollution has emerged
as a major environmental and public health
concern globally (Moreda-Pifieiro et al., 2021),
particularly following efforts to reduce PMazs
concentrations to below regulatory thresholds.
There is widespread scientific and regulatory
interest in understanding the dynamics of
ground-level NO2, a key atmospheric pollutant,
due to its well-documented harmful effects on
human health. Research has also highlighted
the detrimental impacts of NO, on vegetation,
contributing to reduced plant growth and crop
yields (Pietrogrande et al., 2021). According to
the World Health Organization (WHO), strong
evidence from both epidemiological and
toxicological studies shows that elevated NO.
concentrations are a primary contributor to
adverse respiratory outcomes (Varga-Balogh et
al., 2021). These effects range from decreased
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lung function and aggravated asthma symptoms
to increased mortality, particularly among
sensitive population groups such as children,
the elderly, and individuals with pre-existing
respiratory conditions.

Ground-level ozone is a secondary pollutant
that results predominantly from the photo-
chemical chain reactions involving nitrogen
oxides (NOx = NO + NO3), carbon monoxide
(CO) and volatile organic compounds (VOCs)
using the catalysis of sunlight in the
troposphere (Virghileanu et al., 2020).

Over the past few decades, greenhouse gas
concentrations have increased around the
world. With the rapid development of car
traffic and the car fleet in particular, air
pollution has become increasingly in South-
Eastern Europe (Constantin et al., 2017). Since
2017, several legislative actions have been
carried out, including the elimination of the
environmental tax on vehicle registration. This
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fact led to the increase in the level of air
pollution in the South-East of Europe.

In this paper, the nitrogen dioxide monitoring
data in the South-East of Europe are presented,
taking into account a system of 7 automatic air
quality monitoring stations within the national
network. The data were used to analyse the
characteristics of variation and the main causes
of the concentration of nitrogen dioxide - NO2
in the South-East area of FEurope in
combination with the relationship between
different pollutants and meteorological factors.

MATERIALS AND METHODS

Since 2010, a national air quality monitoring
network (https://www.calitateaer.ro/) has been
established in South-Eastern Europe, which
now includes 158 national automatic stations.
Data for NO: were sourced from seven
automatic air quality monitoring stations that
are part of Romania's national monitoring
network. These stations provided hourly
measurements of NO. and associated pollutants
(e.g., NO, NOy, O, CO, PM), along with
meteorological  variables such as solar
radiation, wind speed, temperature, and
humidity, covering the years 2017 to 2024.
This high-resolution dataset enabled the
examination of NO, variability across multiple
temporal scales.

To investigate temporal trends, the researchers
employed classical statistical techniques,
notably one-way Analysis of Variance
(ANOVA) and the Kruskal-Wallis test. These
methods were applied to assess seasonal,
weekly, and diurnal fluctuations in NO.
concentrations. The statistical tests consistently
yielded p-values below 0.001, confirming
significant variation in NO. levels across
different time periods. Seasonal changes likely
reflected atmospheric chemistry and heating or
traffic patterns, while weekly and hourly
patterns pointed to anthropogenic influences
such as workweek traffic cycles and
photochemical processes during daylight hours.
The data recorded between 2017 and 2025 were
used together for data processing in this paper.
The equipment of the automatic air quality
monitoring stations collects automatically air
samples and generates data reports every 30
minutes; then automatically uploads this data to

the national database from local environmental
protection departments. Table 1 shows the
details of the parameters taken into the
statistical analysis from each sampling stations,
and Table 2 presents the location of the air
quality stations used in this study based on their
coordinates.

Table 1. Monitored parameters in the network of
monitoring points

Parameters Unit of Evaluation Notatia
measurement method param
03 [ng/m?] Hourly averaged Pl
CO. [pg/m?] Hourly averaged P2
NO [pg/m?] Hourly averaged P3
NO2 [png/m?] Hourly averaged P4
NOx [ug/m?®] Hourly averaged P5
SO2 [ug/m*] Hourly averaged P6
Benzene [ug/m*] Hourly averaged P7
Ethylbenzene [ug/m*] Hourly averaged P8
m-Xilene [ng/m?] Hourly averaged P9
o-Xilene [ng/m?] Hourly averaged P10
p-Xilen [ng/m?] Hourly averaged P11
Toluene [ng/m?] Hourly averaged P12
SERIOUS. 10 - [ng/m?] Hourly averaged P13
PM 10
SERIOUS. 2.5 - [ng/m*] Hourly averaged P14
PM 2.5

LSPM10 - PM 10 [ug/m*] Hourly averaged P15
LSPMI10-PM 2.5 [ng/m*] Hourly averaged P16
Precipitation [mm] Hourly averaged P17
Air pressure [mbar] Hourly averaged P18
Solar radiation [W/m?] Hourly averaged P19
Air temperature [°C] Hourly averaged P20
Relative humidity [%] Hourly averaged P21
Wind speed [m/s] Hourly averaged P22
Wind direction [grN] Hourly averaged P23

Table 2. Coordinates of monitoring stations

Area Name Wide Long Altitude
GL5S 45.82 27.44 31.00
GLI 4542 44.02 51.00
South- GL4 4541 44.05 38.00
;:f;'f‘ BR2 4526 27.97 19.00
e BZI 45.15 26.82 98.00
omania
FP2 45.18 2877 35.00
VNI 45.70 2721 45.00
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RESULTS AND DISCUSSIONS

In this section, we will present the results of
statistical analysis and the results of numerical
simulations using digital fitre (Voipan, Voipan,
& Barbu, 2025).

Statistical analysis of the temporal variation
of nitrogen dioxide concentration.

Seasonal variation analyses were performed for
the concentration of NO:z in the South-East area
of Romania. Figure 1 shows, for example, box
plot charts (Afshar-Mohajer et al., 2018) of
NO: concentration in relation to the season in
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question for the set of monitoring stations for
2018.

Obviously, seasonal variation was analyzed
using ANOVA methods (Koziel, Pietrenko-
Dabrowska, Wojcikowski, & Pankiewicz,
2025). In Table 3 are presented the results
obtained for the seasonal variation presented
above. It is noted that there is certainly a
significant difference between the seasons
considered between 2017 and 2024 (Table 3).

Box Plot of NO2 Hourly averaged [ug/m®] grouped by season
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Figure 1. Seasonal variation of NO, during 2018

Thus, it is observed that in all cases submitted
on NO2 concentration, values of parameter p —
confidence level, both for the analysis of using
ANOVA methods one-way and for statistical
analysis the Kruskal-Wallis test (KW) (Iticescu
et al., 2019), are much smaller than 0.05
(Table 3).

Table 3. results obtained for the seasonal

Figure 2 shows, for example, the box plot
graphs (NO:2 concentration in relation to the
day of the week) for the set of monitoring
stations for 2018 and Table 4 shows the values
resulting from the ANOVA and Kruskal-Wallis
test. Thus, it is observed that, in all cases, the
values of the p parameter are much lower than
0.001, which means significant differences.
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Figure 2. Weekdays variation of NO, during 2018
Table 4. Results obtained for weekly ANOVA
(for a period of one week)
Name F value, p — value H value, p - value
GLS F(6.8748) = 14.6618, p= | KW H(6.8755)=118.6725,
0.0000; p =0.0000
GLI F(6.8748) = 7.906, p = KW H(6.8755) = 133.5861,
0.00000; p =0.0000
GL4 F(6.8748) =16.3105,p= | KW H(6.8755) =137.9648,
0.0000; p =0.0000
BR2 F(6.8748) =12.5073,p= | KW H(6.8755)=162.6187,
0.0000; p=0.0000
BZI F(6.8748)=7.3831,p = KW H(6.8755) =239.9735,
0.00000; p =0.0000
P2 F(6.8748) =27.9262,p= | KW H(6.8755)=306.9294,
0.0000; p =0.0000
VNI F(6.8748) =16.3649, p = KW H(6.8755) = 138.5051,
0.0000; p =0.0000

ANOVA method

Name F value, p - value H value, p- value

GLS F(3.8751)=223.6277,p= | KW H(3.8755) = 861.4596,
0.0000 p =0.0000

GL1 F(3.8751)=1923.508, p= | KW H(3.8755) =2776.935,
0.0000 p =0.0000

GLa | FG8751)=186.0061,p= | KW H(3.8755) = 995.1096,
0.0000 p =0.0000

BR2 F(3.8751)=72.9322,p= KW H(3.8755) = 179.6793,
0.0000 p =0.0000

BZ1 F(3.8751) = 61.504, KW H(3.8755) = 173.5316,
p = 0.0000 p = 0.0000

2 F(3.8751)= 133.792, p= | KW H(3.8755) = 955.3999,
0.0000 p =0.0000

VNI F(3.8751)=176.092, KW H(3.8755) = 424.889, p
p=0.0000 =0.0000

Similarly, for all data sets,

the weekly variation

analysis for NO:2 concentration in the South-
East area of Romania was performed.
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Lastly, we investigated the diurnal variability
of NO. concentrations in the south-eastern
region of Romania.

Figure 3 shows, for example, the box plot
charts for the set of monitoring stations for
2018, and Table 5 shows the values for the
ANOVA and Kruskal-Wallis test (NO2
concentration in relation to the hour).

At this stage, the question arises whether a
numerical model can be made that can integrate
all these statistical data leading to the
identification of some essential parameters -
NOx, NO, and solar radiation (Table 1).
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Figure 3. Diurnal variation of NO; during 2018

Table 5. Results obtained for daytime ANOVA

Name F value, p - value H value, p - value
GLS F(23.8731) = 15.6522,p= | KW-H(23.8755) =
0.0000; 348.5298, p = 0.0000
GL1 F(23.8731)=17.2156,p = KW-H(23.8755) =
0.0000; 448.7269, p = 0.0000
GL4 F(23.8731)=38.4603, p= | KW-H(23.8755) =
0.0000; 1896.5265, p = 0.0000
BR2 F(23.8731)=13.8979,p= | KW-H(23.8755) =
0.0000; 680.6765, p = 0.0000
BZI F(23.8731)=12.2314,p= | KW-H(23.8755) =
0.0000; 603.4816, p = 0.0000
P2 F(23.8731)=25.2004, p= | KW-H(23.8755) =
0.0000; 770.6485, p = 0.0000
VNI F(23.8731)=28.4301,p= | KW-H(23.8755)=
0.0000; 1139.2773, p = 0.0000

In this regard, a multidimensional model was
developed to identify the set of physical
variables  influencing  ground-level NO,
concentration. Table 6 presents the results
obtained for the BR2 station in 2017. The
statistical model employed a factorial analysis
approach, using the parameters listed in Table
1, with the sum of squares (SS) as a key metric.
It is important to note that, for assessing NO,
conformity, the key parameters comprise NO
concentration, NOx concentration, and ground-
level solar radiation values - as indicated in
Table 6 (Tticescu et al., 2019).

At this stage, the reliability and robustness of
the developed statistical model can be
evaluated. Table 7 presents the results for the
BR-2 station based on the 2017 dataset, with
respect to the model’s approximation accuracy.
For all other stations considered, the models
achieved an R? coefficient exceeding 0.90,
indicating a high degree of explanatory power.

Table 6. Univariate Tests of Significance, Effect Sizes,
and Powers for BR2 - NO, Hourly averaged [pug/m?]*

Effect SS F p
Intercept 0.0 0 1.000000
03 [ug/m?] 0.0 0 1.000000
CO [pg/m’] 0.0 0 1.000000
NO [ug/m?] 129543.6 2854069 | 0.000000*
NOx [pg/m*] 540546.5 11909170 | 0.000000*
SO2 [ug/m?] 0.0 0 1.000000
Benzene [pg/m?] 0.0 0 1.000000
Ethylbenzene [pg/m?] 0.0 0 1.000000
m-Xylene [pug/m?] 0.0 0 1.000000
o-Xylene [pg/m?®] 0.0 0 1.000000
p-Xylene [pg/m?] 0.0 0 1.000000
Toluene [pg/m?] 0.0 0 1.000000
Precipitation [mm] 0.0 0 1.000000
Air pressure [mbar] 0.0 0 1.000000
Solar radiation [W/m?] 0.3 6 0.012867*
Air temperature [°C] 0.0 0 1.000000
Relative humidity [%] 0.0 0 1.000000
Wind speed [m/s] 0.1 3 0.091114
Error 363.6

*Sigma-restricted ~ parameterization  Effective  hypothesis
decomposition

Table 7. Test of SS Whole Model vs. SS Residual (BR2
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Report 2017)
Dependent Multiple MultipleR? Adjusted F p
variable R R
BR2-NO: | 999848 | 0.999695 | 0.999694 1545295 0.00
[ng/m’]
Numerical simulation of the temporal

variation of nitrogen dioxide concentration.

The specialized literature provides a variety of
analysis and interpolation procedures, as well
as algorithms, aimed at improving the accuracy
of NO: estimation and prediction (Koziel et al.,
2025). Several highly efficient algorithms
implementing difference-based methods have
been reported (Koziel et al., 2025). In the
present study, we employed a filter with three
input parameters and a single output parameter
- NO: concentration (Figure 4) (Koziel et al.,
2025). The algorithm follows the structure of a
Recursive Least Squares (RLS) filter (Barbu,
2024). As a result of the iterative process,
numerical simulations consistently converged
in all cases, with the trace of the covariance
matrix reaching its minimum value (Figure 5).




Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering. Vol. XIV, 2025
Print ISSN 2285-6064, CD-ROM ISSN 2285-6072, Online ISSN 2393-5138, ISSN-L 2285-6064

At the same time, the Nyquist diagram (Koziel
et al., 2025) shows that the simulation process
is stationary, being finally obtained closed
trajectories in the right semiplane (Voipan et
al., 2025). Finally, the response of the applied
filter and the evolution of the estimation error
exhibit a clear tendency toward convergence
(Figure 6), indicating that the filter operates
effectively.

Digital
filter

ouzéut >

Figure 4. Digital filter configuration

Trace of Cxx matrix

200 400 600 800 1000 1200

Figure 5. Digital filter covariance matrix trace and
evolution towards convergence (matrix trace value
versus simulation number)

Nyquist Diagram

Imaginary Axis
>

-4 2

-2 0
Real Axis

Figure 6. Nyquist filter response diagram

The final output of the filter is illustrated in
Figure 7, where the amplification and
refinement of the data following the filter’s
application are evident.
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Figure 7. Digital filter response
CONCLUSIONS

Beyond exploratory statistics, the study
advanced to multivariate modeling to identify
key predictors influencing NO: concentrations.
Using univariate tests of significance, our work
determined that NO, NOy, and solar radiation
were the most impactful variables. These
predictors were integrated into a factorial
regression model, which showed exceptionally
high accuracy, with R? values exceeding 0.99
for certain stations, such as BR2. This strong
explanatory power highlighted the model’s
potential for accurate and localized air quality
assessments.

The predictive component of the study was
based on a Recursive Least Squares (RLS)
filter, a numerical algorithm implemented in
Python. This digital filter used the key
predictors to estimate NO. concentrations in
real-time, dynamically adjusting to new input
data. The RLS model achieved convergence in
all test cases, demonstrated by the minimization
of the covariance matrix trace and stability
confirmed through Nyquist diagram analysis.
Model validation revealed high correlation with
observed data and RMSE values under
3.5 upg/m? underscoring the model’s
effectiveness. These results indicate that the
proposed approach not only enables reliable
NO. prediction but also holds promise for cost-
effective deployment in air quality monitoring
and environmental management.
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The corrective analysis and simulation process
developed within the group exploited reference
data and data provided by the national air
quality monitoring network, collected in
several locations, regarding the evaluation of
the evolution and prediction of the NO2
concentration. The rigorous verification
indicates that the proposed correction technique
achieves a very good accuracy of NO2
monitoring, with a correlation coefficient
exceeding 0.88, obtained for the reference data.
Simultaneously, the RMSE error remains
below 3.5 ug/m’. Achieving such very high
accuracy confirms the practicality and
reliability of NO:2 detection using inexpensive
detection  devices.  Further  experiments
involving alternative correction configurations
emphasize the importance of the algorithmic
tools developed in refining the correction
scheme. Specifically, the inclusion of
additional input variables, and the improvement
of global data correlation together increase the
accuracy of NO:2 detection.
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