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Abstract 
 
Nitrogen dioxide is found in the atmosphere as a key ingredient in the photochemical formation of smog and acid rain, 
nitrogen dioxide is a poisonous gas that is formed during combustion. Toxic at high concentrations, it reacts with 
moisture in the air to form nitric acid, which is highly corrosive and dangerous to plants and animals. In this study, we 
present a predictive model for nitrogen dioxide concentrations measured between 2017 and 2024 at ground level in a 
national network of monitoring stations. The model is based on a statistical approach to measurements from 152 
automatic measurement points, with an hourly resolution. The analysis carried out allowed the construction of a 
mathematical model in order to make an effective prediction. The algorithms used were of the Recursive least squares 
filter type. The application used was made possible by running a dedicated software in PyCharm. It was found that the 
model for daytime concentrations depends linearly on a series of parameters monitored by the national network. 
 
Key words: NO2, algorithm, RLS, statistical analysis. 
 
INTRODUCTION  
 
Nitrogen dioxide (NO2) pollution has emerged 
as a major environmental and public health 
concern globally (Moreda-Piñeiro et al., 2021), 
particularly following efforts to reduce PM2.5 

concentrations to below regulatory thresholds. 
There is widespread scientific and regulatory 
interest in understanding the dynamics of 
ground-level NO2, a key atmospheric pollutant, 
due to its well-documented harmful effects on 
human health. Research has also highlighted 
the detrimental impacts of NO₂ on vegetation, 
contributing to reduced plant growth and crop 
yields (Pietrogrande et al., 2021). According to 
the World Health Organization (WHO), strong 
evidence from both epidemiological and 
toxicological studies shows that elevated NO₂ 
concentrations are a primary contributor to 
adverse respiratory outcomes (Varga-Balogh et 
al., 2021). These effects range from decreased 

lung function and aggravated asthma symptoms 
to increased mortality, particularly among 
sensitive population groups such as children, 
the elderly, and individuals with pre-existing 
respiratory conditions. 
Ground-level ozone is a secondary pollutant 
that results predominantly from the photo-
chemical chain reactions involving nitrogen 
oxides (NOX = NO + NO2), carbon monoxide 
(CO) and volatile organic compounds (VOCs) 
using the catalysis of sunlight in the 
troposphere (Vîrghileanu et al., 2020).  
Over the past few decades, greenhouse gas 
concentrations have increased around the 
world. With the rapid development of car 
traffic and the car fleet in particular, air 
pollution has become increasingly in South-
Eastern Europe (Constantin et al., 2017). Since 
2017, several legislative actions have been 
carried out, including the elimination of the 
environmental tax on vehicle registration. This 
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fact led to the increase in the level of air 
pollution in the South-East of Europe.  
In this paper, the nitrogen dioxide monitoring 
data in the South-East of Europe are presented, 
taking into account a system of 7 automatic air 
quality monitoring stations within the national 
network. The data were used to analyse the 
characteristics of variation and the main causes 
of the concentration of nitrogen dioxide - NO2 

in the South-East area of Europe in 
combination with the relationship between 
different pollutants and meteorological factors. 
 
MATERIALS AND METHODS  

 
Since 2010, a national air quality monitoring 
network (https://www.calitateaer.ro/) has been 
established in South-Eastern Europe, which 
now includes 158 national automatic stations. 
Data for NO2 were sourced from seven 
automatic air quality monitoring stations that 
are part of Romania's national monitoring 
network. These stations provided hourly 
measurements of NO₂ and associated pollutants 
(e.g., NO, NOₓ, O₃, CO, PM), along with 
meteorological variables such as solar 
radiation, wind speed, temperature, and 
humidity, covering the years 2017 to 2024. 
This high-resolution dataset enabled the 
examination of NO₂ variability across multiple 
temporal scales. 
To investigate temporal trends, the researchers 
employed classical statistical techniques, 
notably one-way Analysis of Variance 
(ANOVA) and the Kruskal-Wallis test. These 
methods were applied to assess seasonal, 
weekly, and diurnal fluctuations in NO₂ 
concentrations. The statistical tests consistently 
yielded p-values below 0.001, confirming 
significant variation in NO₂ levels across 
different time periods. Seasonal changes likely 
reflected atmospheric chemistry and heating or 
traffic patterns, while weekly and hourly 
patterns pointed to anthropogenic influences 
such as workweek traffic cycles and 
photochemical processes during daylight hours. 
The data recorded between 2017 and 2025 were 
used together for data processing in this paper. 
The equipment of the automatic air quality 
monitoring stations collects automatically air 
samples and generates data reports every 30 
minutes; then automatically uploads this data to 

the national database from local environmental 
protection departments. Table 1 shows the 
details of the parameters taken into the 
statistical analysis from each sampling stations, 
and Table 2 presents the location of the air 
quality stations used in this study based on their 
coordinates.  
 

Table 1. Monitored parameters in the network of 
monitoring points 

Parameters Unit of 
measurement  

Evaluation 
method 

Notatia 
param. 

O3 [μg/m³] Hourly averaged P1 
CO. [μg/m³] Hourly averaged P2 
NO [μg/m³] Hourly averaged P3 
NO2 [μg/m³] Hourly averaged P4 
NOx [μg/m³] Hourly averaged P5 
SO2 [μg/m³] Hourly averaged P6 

Benzene [μg/m³] Hourly averaged P7 
Ethylbenzene [μg/m³] Hourly averaged P8 

m-Xilene [μg/m³] Hourly averaged P9 
o-Xilene [μg/m³] Hourly averaged P10 
p-Xilen [μg/m³] Hourly averaged P11 
Toluene [μg/m³] Hourly averaged P12 

SERIOUS. 10 - 
PM 10 

[μg/m³] Hourly averaged P13 

SERIOUS. 2.5 - 
PM 2.5 

[μg/m³] Hourly averaged P14 

LSPM10 - PM 10 [μg/m³] Hourly averaged P15 
LSPM10 - PM 2.5 [μg/m³] Hourly averaged P16 

Precipitation [mm] Hourly averaged P17 
Air pressure [mbar] Hourly averaged P18 

Solar radiation [W/m²] Hourly averaged P19 
Air temperature [°C] Hourly averaged P20 

Relative humidity [%] Hourly averaged P21 
Wind speed [m/s] Hourly averaged P22 

Wind direction [grN] Hourly averaged P23 

 
Table 2. Coordinates of monitoring stations  

Area Name Wide Long Altitude 

South-
eastern 
part of 
Romania 

GL5 45.82 27.44 31.00 
GL1 45.42 44.02 51.00 
GL4 45.41 44.05 38.00 
BR2 45.26 27.97 19.00 
BZ1 45.15 26.82 98.00 
FP2 45.18 28.77 35.00 
VN1 45.70 27.21 45.00 

 
RESULTS AND DISCUSSIONS  

 
In this section, we will present the results of 
statistical analysis and the results of numerical 
simulations using digital fitre (Voipan, Voipan, 
& Barbu, 2025).  
 
Statistical analysis of the temporal variation 
of nitrogen dioxide concentration.  
Seasonal variation analyses were performed for 
the concentration of NO2 in the South-East area 
of Romania. Figure 1 shows, for example, box 
plot charts (Afshar-Mohajer et al., 2018) of 
NO2 concentration in relation to the season in 
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question for the set of monitoring stations for 
2018. 
Obviously, seasonal variation was analyzed 
using ANOVA methods (Koziel, Pietrenko-
Dabrowska, Wójcikowski, & Pankiewicz, 
2025). In Table 3 are presented the results 
obtained for the seasonal variation presented 
above. It is noted that there is certainly a 
significant difference between the seasons 
considered between 2017 and 2024 (Table 3). 
 

 
Figure 1. Seasonal variation of NO2 during 2018 

 
Thus, it is observed that in all cases submitted 
on NO2 concentration, values of parameter p – 
confidence level, both for the analysis of using 
ANOVA methods one-way and for statistical  
analysis the Kruskal-Wallis test (KW) (Iticescu 
et al., 2019), are much smaller than 0.05  
(Table 3).  
 

Table 3. results obtained for the seasonal  
ANOVA method  

Name F value, p - value H value, p- value 

GL5 F(3.8751) = 223.6277, p = 
0.0000  

KW H(3.8755) = 861.4596, 
p = 0.0000 

GL1 F(3.8751) = 1923.508, p = 
0.0000 

KW H(3.8755) = 2776.935, 
p = 0.0000 

GL4 F(3.8751) = 186.0061, p = 
0.0000 

KW H(3.8755) = 995.1096, 
p = 0.0000 

BR2 F(3.8751) = 72.9322, p = 
0.0000 

KW H(3.8755) = 179.6793, 
p = 0.0000 

BZ1 F(3.8751) = 61.504,  
p = 0.0000 

KW H(3.8755) = 173.5316, 
p = 0.0000 

FP2 F(3.8751) = 133.792, p = 
0.0000 

KW H(3.8755) = 955.3999, 
p = 0.0000 

VN1 F(3.8751) = 76.092,  
p = 0.0000 

KW H(3.8755) = 424.889, p 
= 0.0000 

 
Similarly, for all data sets, the weekly variation 
analysis for NO2 concentration in the South-
East area of Romania was performed. 

Figure 2 shows, for example, the box plot 
graphs (NO2 concentration in relation to the 
day of the week) for the set of monitoring 
stations for 2018 and Table 4 shows the values 
resulting from the ANOVA and Kruskal-Wallis 
test. Thus, it is observed that, in all cases, the 
values of the p parameter are much lower than 
0.001, which means significant differences.  
 

 
Figure 2. Weekdays variation of NO2 during 2018 

 
Table 4. Results obtained for weekly ANOVA  

(for a period of one week) 

Name F value, p – value H value, p - value 

GL5 F(6.8748) = 14.6618, p = 
0.0000;  

KW H(6.8755) = 118.6725, 
p = 0.0000 

GL1 F(6.8748) = 7.906, p = 
0.00000;  

KW H(6.8755) = 133.5861, 
p = 0.0000 

GL4 F(6.8748) = 16.3105, p = 
0.0000;  

KW H(6.8755) = 137.9648, 
p = 0.0000 

BR2 F(6.8748) = 12.5073, p = 
0.0000;  

KW H(6.8755) = 162.6187, 
p = 0.0000 

BZ1 F(6.8748) = 7.3831, p = 
0.00000;  

KW H(6.8755) = 239.9735, 
p = 0.0000 

FP2 F(6.8748) = 27.9262, p = 
0.0000;  

KW H(6.8755) = 306.9294, 
p = 0.0000 

VN1 F(6.8748) = 16.3649, p = 
0.0000;  

KW H(6.8755) = 138.5051, 
p = 0.0000 

 
Lastly, we investigated the diurnal variability 
of NO₂ concentrations in the south-eastern 
region of Romania.  
Figure 3 shows, for example, the box plot 
charts for the set of monitoring stations for 
2018, and Table 5 shows the values for the 
ANOVA and Kruskal-Wallis test (NO2 
concentration in relation to the hour). 
At this stage, the question arises whether a 
numerical model can be made that can integrate 
all these statistical data leading to the 
identification of some essential parameters - 
NOx, NO, and solar radiation (Table 1). 
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Figure 3. Diurnal variation of NO2 during 2018 

 
Table 5. Results obtained for daytime ANOVA  

Name F value, p - value H value, p - value 

GL5 F(23.8731) = 15.6522, p = 
0.0000;  

KW-H(23.8755) = 
348.5298, p = 0.0000 

GL1 F(23.8731) = 7.2156, p = 
0.0000;  

KW-H(23.8755) = 
448.7269, p = 0.0000 

GL4 F(23.8731) = 38.4603, p = 
0.0000;  

KW-H(23.8755) = 
1896.5265, p = 0.0000 

BR2 F(23.8731) = 13.8979, p = 
0.0000;  

KW-H(23.8755) = 
680.6765, p = 0.0000 

BZ1 F(23.8731) = 12.2314, p = 
0.0000;  

KW-H(23.8755) = 
603.4816, p = 0.0000 

FP2 F(23.8731) = 25.2004, p = 
0.0000;  

KW-H(23.8755) = 
770.6485, p = 0.0000 

VN1 F(23.8731) = 28.4301, p = 
0.0000;  

KW-H(23.8755) = 
1139.2773, p = 0.0000 

 
In this regard, a multidimensional model was 
developed to identify the set of physical 
variables influencing ground-level NO₂ 
concentration. Table 6 presents the results 
obtained for the BR2 station in 2017. The 
statistical model employed a factorial analysis 
approach, using the parameters listed in Table 
1, with the sum of squares (SS) as a key metric. 
It is important to note that, for assessing NO₂ 
conformity, the key parameters comprise NO 
concentration, NOx concentration, and ground-
level solar radiation values - as indicated in 
Table 6 (Iticescu et al., 2019). 
At this stage, the reliability and robustness of 
the developed statistical model can be 
evaluated. Table 7 presents the results for the 
BR-2 station based on the 2017 dataset, with 
respect to the model’s approximation accuracy. 
For all other stations considered, the models 
achieved an R² coefficient exceeding 0.90, 
indicating a high degree of explanatory power. 
 
 

Table 6. Univariate Tests of Significance, Effect Sizes, 
and Powers for BR2 - NO2 Hourly averaged [μg/m³]* 

Effect SS F p 
Intercept 

 

0.0 0 1.000000 

O3 [μg/m³] 
 

0.0 0 1.000000 

CO [μg/m³] 
 

0.0 0 1.000000 

NO [μg/m³] 
 

129543.6 2854069 0.000000* 

NOx [μg/m³] 
 

540546.5 11909170 0.000000* 

SO2 [μg/m³] 
 

0.0 0 1.000000 

Benzene [μg/m³] 
 

0.0 0 1.000000 

Ethylbenzene [μg/m³] 
 

0.0 0 1.000000 

m-Xylene [μg/m³] 
 

0.0 0 1.000000 

o-Xylene [μg/m³] 
 

0.0 0 1.000000 

p-Xylene [μg/m³] 
 

0.0 0 1.000000 

Toluene [μg/m³] 
 

0.0 0 1.000000 

Precipitation [mm] 
 

0.0 0 1.000000 

Air pressure [mbar] 
 

0.0 0 1.000000 

Solar radiation [W/m²] 
 

0.3 6 0.012867* 

Air temperature [°C] 
 

0.0 0 1.000000 

Relative humidity [%] 
 

0.0 0 1.000000 

Wind speed [m/s] 
 

0.1 3 0.091114 

Error 
 

363.6   
*Sigma-restricted parameterization Effective hypothesis 
decomposition 
 
Table 7. Test of SS Whole Model vs. SS Residual (BR2 

Report 2017) 
Dependent 

variable 
Multiple 

R  
MultipleR²  Adjusted 

R²  
F  p 

BR2 - NO2 
[μg/m³] 0.999848 0.999695 0.999694 1545295 0.00 

 
Numerical simulation of the temporal 
variation of nitrogen dioxide concentration. 
The specialized literature provides a variety of 
analysis and interpolation procedures, as well 
as algorithms, aimed at improving the accuracy 
of NO₂ estimation and prediction (Koziel et al., 
2025). Several highly efficient algorithms 
implementing difference-based methods have 
been reported (Koziel et al., 2025). In the 
present study, we employed a filter with three 
input parameters and a single output parameter 
- NO₂ concentration (Figure 4) (Koziel et al., 
2025). The algorithm follows the structure of a 
Recursive Least Squares (RLS) filter (Barbu, 
2024). As a result of the iterative process, 
numerical simulations consistently converged 
in all cases, with the trace of the covariance 
matrix reaching its minimum value (Figure 5). 
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At the same time, the Nyquist diagram (Koziel 
et al., 2025) shows that the simulation process 
is stationary, being finally obtained closed 
trajectories in the right semiplane (Voipan et 
al., 2025). Finally, the response of the applied 
filter and the evolution of the estimation error 
exhibit a clear tendency toward convergence 
(Figure 6), indicating that the filter operates 
effectively.  
 

 
Figure 4. Digital filter configuration 

 

 
Figure 5. Digital filter covariance matrix trace and 
evolution towards convergence (matrix trace value 

versus simulation number) 
 

 
Figure 6. Nyquist filter response diagram  

 
The final output of the filter is illustrated in 
Figure 7, where the amplification and 
refinement of the data following the filter’s 
application are evident. 
 

 
Figure 7. Digital filter response  

 
CONCLUSIONS  
 
Beyond exploratory statistics, the study 
advanced to multivariate modeling to identify 
key predictors influencing NO₂ concentrations. 
Using univariate tests of significance, our work 
determined that NO, NOₓ, and solar radiation 
were the most impactful variables. These 
predictors were integrated into a factorial 
regression model, which showed exceptionally 
high accuracy, with R² values exceeding 0.99 
for certain stations, such as BR2. This strong 
explanatory power highlighted the model’s 
potential for accurate and localized air quality 
assessments. 
The predictive component of the study was 
based on a Recursive Least Squares (RLS) 
filter, a numerical algorithm implemented in 
Python. This digital filter used the key 
predictors to estimate NO₂ concentrations in 
real-time, dynamically adjusting to new input 
data. The RLS model achieved convergence in 
all test cases, demonstrated by the minimization 
of the covariance matrix trace and stability 
confirmed through Nyquist diagram analysis. 
Model validation revealed high correlation with 
observed data and RMSE values under                  
3.5 μg/m³, underscoring the model’s 
effectiveness. These results indicate that the 
proposed approach not only enables reliable 
NO₂ prediction but also holds promise for cost-
effective deployment in air quality monitoring 
and environmental management. 
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The corrective analysis and simulation process 
developed within the group exploited reference 
data and data provided by the national air 
quality monitoring network, collected in 
several locations, regarding the evaluation of 
the evolution and prediction of the NO2 

concentration. The rigorous verification 
indicates that the proposed correction technique 
achieves a very good accuracy of NO2 
monitoring, with a correlation coefficient 
exceeding 0.88, obtained for the reference data. 
Simultaneously, the RMSE error remains 
below 3.5 μg/m3. Achieving such very high 
accuracy confirms the practicality and 
reliability of NO2 detection using inexpensive 
detection devices. Further experiments 
involving alternative correction configurations 
emphasize the importance of the algorithmic 
tools developed in refining the correction 
scheme. Specifically, the inclusion of 
additional input variables, and the improvement 
of global data correlation together increase the 
accuracy of NO2 detection. 
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